Skip to main content
Log in

Topology optimization design of porous infill structure with thermo-mechanical buckling criteria

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

With the tremendous development of additive manufacturing technology in recent years, porous infill structures with well-designed topology configurations have been widely used in various physical fields. The porous infill structure may be prone to thermo-mechanical buckling failure under certain extreme thermal conditions due to temperature gradient effects and delicate local details of the porous infill structure.Therefore, a topological optimization design method, which considers the influence of the thermo-solid coupling field on the buckling performance of the porous infill structure, is proposed by using the projection approach merged with the Solid Isotropic Material with Penalization (SIMP) method. Critical buckling load factors obtained with thermal-elastic equilibrium and linear buckling analysis are employed to measure the buckling performance of the structure. Numerical examples show that the proposed method can effectively improve the buckling performance of the porous infill structure under the thermo-mechanical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Andreasen, C.S.J.S., Optimization, M.: A framework for topology optimization of inertial microfluidic particle manipulators. Struct. Multidiscip. Optim. 6, 1–19 (2020)

    MathSciNet  Google Scholar 

  • Cummer, S.A., Christensen, J., Alù, A.: Controlling Sound with Acoustic Metamaterials Nature Reviews. Materials 1, 16001 (2016)

    Google Scholar 

  • da Silva, G.A., Beck, A.T., Sigmund OJCMiAM, Engineering,: Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity. Comput. Method Appl. Mech. Eng. 365, 112972 (2020)

    Article  MathSciNet  Google Scholar 

  • Deaton, J.D., Grandhi, R.V.: Stress-based design of thermal structures via topology optimization. Struct. Multidiscip. Optim. 53, 253–270 (2015). https://doi.org/10.1007/s00158-015-1331-z

    Article  MathSciNet  Google Scholar 

  • Deng, S., Suresh, K.: Stress constrained thermo-elastic topology optimization with varying temperature fields via augmented topological sensitivity based level-set. Struct. Multidiscip. Optim. 56, 1413–1427 (2017a). https://doi.org/10.1007/s00158-017-1732-2

    Article  MathSciNet  Google Scholar 

  • Deng, S., Suresh, K.: Topology optimization under thermo-elastic buckling. Struct. Multidiscip. Optim. 55, 1759–1772 (2017b)

    Article  MathSciNet  Google Scholar 

  • Diaz, A., Sigmund, O.: Checkerboard Patterns in Layout Optimization. Struct. Optim. 10, 40–45 (1995)

    Article  Google Scholar 

  • Dou, S.: A projection approach for topology optimization of porous structures through implicit local volume control. Struct. Multidiscip. Optim 62, 1–16 (2020)

    Article  MathSciNet  Google Scholar 

  • Dunning, P.D., Ovtchinnikov, E., Scott, J., Kim, H.A.: Level-set topology optimization with many linear buckling constraints using an efficient and robust eigensolver. Int. J. Numer. Meth. Eng. 107, 1029–1053 (2016)

    Article  MathSciNet  Google Scholar 

  • Ferrari, F., Sigmund, O.: Revisiting topology optimization with buckling constraints. Struct. Multidiscip. Optim. 59, 1401–1415 (2019)

    Article  MathSciNet  Google Scholar 

  • Fu, J., Li, H., Gao, L., Xiao, M.: Design of shell-infill structures by a multiscale level set topology optimization method. Comput. Struct. 212, 162–172 (2019)

    Article  Google Scholar 

  • Gao, X., Ma, H.: Topology optimization of continuum structures under buckling constraints. Comput. Struct. 157, 142–152 (2015)

    Article  Google Scholar 

  • Gao, T., Zhang, W.: Topology optimization involving thermo-elastic stress loads. Struct. Multidiscip. Optim. 42, 725–738 (2010). https://doi.org/10.1007/s00158-010-0527-5

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, X., Li, L., Ma, H.: An adaptive continuation method for topology optimization of continuum structures considering buckling constraints. Int. J. Appl. Mech. 9, 1750092 (2017)

    Article  Google Scholar 

  • Gao, X., Li, Y., Ma, H., Chen GJCMiAM, Engineering,: Improving the overall performance of continuum structures: A topology optimization model considering stiffness, strength and stability. Comp. Methods Appl. Mech. Eng. 359, 112660 (2020)

    Article  MathSciNet  Google Scholar 

  • Hoang, V.-N., Tran, P., Vu, V.-T., Nguyen-Xuan, H.: Design of lattice structures with direct multiscale topology optimization. Composite Struct. 252, 112718 (2020)

    Article  Google Scholar 

  • Huang, X., Xie, Y.M., Jia, B., Li, Q., Zhou, S.: Evolutionary topology optimization of periodic composites for extremal magnetic permeability and electrical permittivity. Struct. Multidiscip. Optim. 46, 385–398 (2012)

    Article  MathSciNet  Google Scholar 

  • Jansen, M., Lombaert, G., Schevenels, M., Sigmund, O.: Topology optimization of fail-safe structures using a simplified local damage model. Struct. Multidiscip. Optim. 49, 657–666 (2014)

    Article  MathSciNet  Google Scholar 

  • Javaheri, R., Eslami, M.: Thermal buckling of functionally graded plates. AIAA J. 40, 162–169 (2002)

    Article  Google Scholar 

  • Jun Wu NA, R¨udiger Westermann, Ole Sigmund (2017) Infill Optimization for Additive Manufacturing –Approaching Bone-like Porous Structures

  • Ko WI (2004) Thermal buckling analysis of rectangular panels subjected to humped temperature profile heating

  • Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys Rev Lett 71, 2022–2025 (1993). https://doi.org/10.1103/PhysRevLett.71.2022

    Article  Google Scholar 

  • Liu, C., Du, Z., Zhang, W., Zhu, Y., Guo, X.: Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization. J. Appl. Mech. 10(1115/1), 4036941 (2017)

    Google Scholar 

  • Nguyen, N.V., Nguyen, H.X., Lee, S., Nguyen-Xuan, H.: Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates. Adv. Eng. Softw. 126, 110–126 (2018)

    Article  Google Scholar 

  • Nguyen, N.V., Lee, J., Nguyen-Xuan, H.: Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers. Compos. B Eng. 172, 769–784 (2019)

    Article  Google Scholar 

  • Nguyen, N.V., Nguyen-Xuan, H., Lee, D., Lee, J.: A novel computational approach to functionally graded porous plates with graphene platelets reinforcement. Thin-Walled Struct. 150, 106684 (2020)

    Article  Google Scholar 

  • Nguyen, N.V., Nguyen, L.B., Nguyen-Xuan, H., Lee, J.: Analysis and active control of geometrically nonlinear responses of smart FG porous plates with graphene nanoplatelets reinforcement based on Bézier extraction of NURBS. Int. J. Mech. Sci. 180, 105692 (2020)

    Article  Google Scholar 

  • Nishi S, Yamada T, Izui K, Nishiwaki S, Terada KJIJfNMiE Isogeometric topology optimization of anisotropic metamaterials for controlling high‐frequency electromagnetic wave 2020;121:1218-1247

  • Pedersen, P., Pedersen, N.L.: Strength optimized designs of thermoelastic structures. Struct. Multidiscip. Optim. 42, 681–691 (2010). https://doi.org/10.1007/s00158-010-0535-5

    Article  Google Scholar 

  • Picelli, R., Vicente, W., Pavanello, R., Xie, Y.: Evolutionary topology optimization for natural frequency maximization problems considering acoustic–structure interaction. Finite Elements Analy. Design 106, 56–64 (2015)

    Article  Google Scholar 

  • Qu, J., Kadic, M., Naber, A., Wegener, M.: Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents. Sci. Rep. 7, 40643 (2017). https://doi.org/10.1038/srep40643

    Article  Google Scholar 

  • Rahmatalla, S., Swan, C.C.: Continuum topology optimization of buckling-sensitive structures. AIAA J. 41, 1180–1189 (2003)

    Article  Google Scholar 

  • Sigmund, O.: Morphology-based black and white filters for topology optimization Structural Multidisciplinary. Optimization 33, 401–424 (2007)

    Google Scholar 

  • Svanberg, K.: The method of moving asymptotes—a new method for structural optimization Int. J. Numer. Meth. Engng. 24, 359–373 (1987)

    Article  MathSciNet  Google Scholar 

  • Thomsen, C.R., Wang, F., Sigmund, O.: Buckling strength topology optimization of 2D periodic materials based on linearized bifurcation analysis. Comput Methods Appl. Mech. Eng. 339, 115–136 (2018)

    Article  MathSciNet  Google Scholar 

  • Vaissier, B., Pernot, J.-P., Chougrani, L., Véron, P.: Genetic-algorithm based framework for lattice support structure optimization in additive manufacturing. Comput. Aided Des. 110, 11–23 (2019). https://doi.org/10.1016/j.cad.2018.12.007

    Article  Google Scholar 

  • Wang, F., Lazarov, B.S., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multidisciplinary Optim. 43, 767–784 (2011)

    Article  Google Scholar 

  • Wang, Y., Xu, H., Pasini, D.: Multiscale isogeometric topology optimization for lattice materials. Comput. Methods Appl. Mech. Eng. 316, 568–585 (2017)

    Article  MathSciNet  Google Scholar 

  • Wu, J., Aage, N., Westermann, R., Sigmund, O.: Infill optimization for additive manufacturing—approaching bone-like porous structures. IEEE trans. visualization comput. graphics 24, 1127–1140 (2017)

    Article  Google Scholar 

  • Wu, J., Clausen, A., Sigmund, O.: Minimum compliance topology optimization of shell–infill composites for additive manufacturing. Comp. Methods Appl. Mech. Eng. 326, 358–375 (2017). https://doi.org/10.1016/j.cma.2017.08.018

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, Z., Xia, L., Wang, S., Shi, T.: Topology optimization of hierarchical lattice structures with substructuring. Comput. Methods Appl. Mech. Eng. 345, 602–617 (2019)

    Article  MathSciNet  Google Scholar 

  • Wu J, Sigmund O, Groen JP Topology optimization of multi-scale structures: a review Structural and Multidisciplinary Optimization 1–26 (2021)

  • Yang, X., Fei, Q., Wu, S., Li, Y.: Thermal buckling and dynamic characteristics of composite plates under pressure load. J. Mech. Sci. Technol. 34, 3117–3125 (2020)

    Article  Google Scholar 

  • Zheng, X., et al.: Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014). https://doi.org/10.1126/science.1252291

    Article  Google Scholar 

Download references

Funding

N. Gan acknowledges the Guangdong Young Talents Project under Grant No. 2019KQNCX157. Q. Wang acknowledges the 2019 Guangdong Province Universities and Colleges Special Innovation Project (Undergraduate) No.2019KTSCX182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Gan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Code availability

The code is not applicable due to the privacy.

Data availability

The data that support the findings of this study are available on request from the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, N., Wang, Q. Topology optimization design of porous infill structure with thermo-mechanical buckling criteria. Int J Mech Mater Des 18, 267–288 (2022). https://doi.org/10.1007/s10999-021-09575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-021-09575-5

Keywords

Navigation