Skip to main content
Log in

Effect of seat belt and head restraint on occupant’s response during rear-end collision

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Current neck injury criteria used to evaluate whiplash injuries are based on the kinematics or kinetics of the occupant’s head and neck during rear impacts. The occupant’s response is affected by many factors including impact severity, seat design and occupant related factors such as gender and posture. Most of the current finite element models are concerned with modeling the head and neck, ignoring the interaction of the seat with the occupant during rear collision. In this work the Global Human Body Model Consortium (GHBMC) finite element model was used to study these interaction effects with emphases on the effect of seat belt, headrest and seat stiffness on the occupant’s response during rear-end collisions and evaluate the response using three neck injury criteria. The study shows the dramatic importance of the occupant’s seat restraint and head rest upon occupant safety. Specifically, the occupant ramping during rear impacts can be prevented by using the seat belt. Furthermore, the headrest reduces the head displacement and rotation. Our work further reveals that the head displacement reduction can lead to higher moments, axial and shear forces at the neck, especially for cases involving poorly adjusted or stiffer headrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barnsley, L., Lord, S., Bogduk, N.: Clinical review whiplash injury. Pain 58, 283–307 (1994)

    Article  Google Scholar 

  • Bostrom, O., Svensson, M., Aldman, B., Hansson, H.A., Haland, Y., Lovsund, P., Seeman, T., Suneson, A., Saljo, A., Ortengren, T.: A new neck injury criterion candidate based on injury findings in the cervical spinal ganglia after experimental neck extension trauma. In: Proceedings of the 1996 international IRCOBI conference biomechanics impact (1996)

  • Cronin, D.S.: Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact. J. Mech. Behav. Biomed. Mater. 33, 55–66 (2014). doi:10.1016/j.jmbbm.2013.01.006

    Article  Google Scholar 

  • Davidsson, J., Deutscher, C., Hell, W., Svensson, M.Y.: Human volunteer kinematics in rear-end sled collisions human volunteer kinematics in rear-end sled collisions. J. Crash Prev. Inj. Control 2, 319–333 (2001). doi:10.1080/10286580008902576

    Article  Google Scholar 

  • De Jager, M.K.: Mathematical head-neck models for acceleration impacts. Technical University of Eindhoven (1996)

  • Eppinger, R., Sun, E., Bandak, F., Haffner, M., Khaewpong, N., Maltese, M., Kuppa, S., Nguyen, T., Takhounts, E., Tannous, R., Zhang, A., Saul, R.: Development of improved injury criteria for the assessment of advanced automotive restraint systems—II. Natl. Highw. Traffic Saf. Adm. Dep. Transp, DC (1999)

    Google Scholar 

  • Farmer, C.M., Wells, J.K., Lund, A.K.: Effects of head restraint and seat redesign on neck injury risk in rear-end crashes. Traffic Inj. Prev. 4, 83–90 (2003). doi:10.1080/15389580309867

    Article  Google Scholar 

  • Fice, J.B., Cronin, D.S., Panzer, M.B.: Cervical spine model to predict capsular ligament response in rear impact. Ann. Biomed. Eng. 39, 2152–2162 (2011). doi:10.1007/s10439-011-0315-4

    Article  Google Scholar 

  • Foster, J., Kortge, J., Wolanin, M.: Hybrid III-a biomechanically-based crash test dummy. SAE Tech. Pap. 770938, 1977 (1977). doi:10.4271/770938

    Google Scholar 

  • Grauer, J.N., Panjabi, M.M., Cholewicki, J., Nibu, K., Dvorak, J.: Whiplash produces and S-shaped curvature of the neck with hyperextension at lower levels. Spine (Phila. Pa. 1976) 22, 2489–2494 (1997)

    Article  Google Scholar 

  • Grujicic, M., Pandurangan, B., Arakere, G., Bell, W.C., He, T., Xie, X.: Seat-cushion and soft-tissue material modeling and a finite element investigation of the seating comfort for passenger–vehicle occupants. Mater. Des. 30, 4273–4285 (2009). doi:10.1016/j.matdes.2009.04.028

    Article  Google Scholar 

  • Hai-bin, C., Yang, K.H., Zheng-guo, W.: Biomechanics of whiplash injury. Chin. J. Traumatol. 12, 305–314 (2009). doi:10.3760/cma.j.issn.1008-1275.2009.05.011

    Google Scholar 

  • Himmetoglu, S., Acar, M., Bouazza-Marouf, K., Taylor, A.: A multi-body human model for rear-impact simulation. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 223, 623–638 (2009). doi:10.1243/09544070JAUTO985

    Article  Google Scholar 

  • Hoover, J., Meguid, S.A.: Analytical viscoelastic modelling of whiplash using lumped- parameter approach. Int. J. Mech. Mater. Des. 11, 125–137 (2015). doi:10.1007/s10999-015-9306-1

    Article  Google Scholar 

  • IIHS: Vehicle Seat/Head Restraint Evaluation Protocol Static Geometric Criteria (Version IV) February 2016. Ruckersville, VA (2016)

    Google Scholar 

  • Kuppa, S., Saunders, J., Stammen, J., Mallory, A.: Kinematically based whiplash injury criterion. US. (2005). doi:10.1017/CBO9781107415324.004

  • Luan, F., Yang, K.H., Deng, B., Begeman, P.C., Tashman, S., King, A.I.: Qualitative analysis of neck kinematics during low-speed rear-end impact. Clin. Biomech. 15, 649–657 (2000)

    Article  Google Scholar 

  • McKenzie, J.A., Williams, J.F.: The Dynamic Behaviour of the Head and Cervical Spine During “Whiplash”. J. Biomech. 4, 477–490 (1971)

    Article  Google Scholar 

  • Meyer, F., Bourdet, N., Deck, C., Willinger, R., Raul, J.S.: Human neck finite element model development and validation against original experimental data. Stapp Car Crash J. 48, 177–206 (2004)

    Google Scholar 

  • NHTSA. Traffic Safety Facts 2014—A compilation of motor vehicle crash data from the fatality analysis reporting system and the general estimates system. Washington, DC (2014)

  • Prasad, P., Kim, A., Weerappuli, D.P.V.: Biofidelity of anthropomorphic test devices for rear impact. In: 41st Stapp Car Crash Conference, Society of Automotive Engineers, pp. 387–415. Warrendale, PA (1997)

  • Schmitt, K., Muser, M.H., Walz, F.H., Niederer, P.F., Muser, M.H., Walz, F.H., Niederer, P.F., Schmitt, K., Muser, M.H., Walz, F.H.: N km–a proposal for a neck protection criterion for low-speed rear-end impacts. Traffic Inj. Prev. 3, 117–126 (2002). doi:10.1080/15389580212002

    Article  Google Scholar 

  • Schmitt, K.-U., Walz, F., Vetter, D., Muser, M.: Whiplash injury: cases with a long period of sick leave need biomechanical assessment. Eur. Spine J. 12, 247–254 (2003). doi:10.1007/s00586-002-0490-y

    Google Scholar 

  • Siegmund, G.P., Brault, J.R., Wheeler, J.B.: The relationship between clinical and kinematic responses from human subject testing in rear-end automobile collisions. Accid. Anal. Prev. 32, 207–217 (2000)

    Article  Google Scholar 

  • Siegmund, G.P., Winkelstein, B.A., Ivancic, P.C., Svensson, M.Y., Vasavada, A.: The anatomy and biomechanics of acute and chronic whiplash injury. Traffic Inj. Prev. 10, 101–112 (2009). doi:10.1080/15389580802593269

    Article  Google Scholar 

  • Stemper, B.D., Yoganandan, N., Rao, R.D., Pintar, F.A.: Influence of thoracic ramping on whiplash kinematics. Clin. Biomech. 20, 1019–1028 (2005). doi:10.1016/j.clinbiomech.2005.06.011

    Article  Google Scholar 

  • Tencer, A.F., Huber, P., Mirza, S.K.: A comparison of biomechanical mechanisms of whiplash injury from rear impacts. In: 47th Annual Proceedings Association for the Advancement of Automotive Medicine. Lisbon, Portugal (2003)

  • van der Horst, M.J.: Human head neck response in frontal, lateral and rear end impact loading—modelling and validation. Thesis, Technische Universiteit Eindhoven (2002). doi:http://dx.doi.org/10.6100/IR554047

  • Viano, D.C., Gargan, M.F.: headrest position during normal driving: implication to neck injury risk in rear crashes. Accid. Anal. Prev. 28, 665–674 (1996)

    Article  Google Scholar 

  • Zhang, L., Meng, Q.: Study on cervical spine stresses based on three-dimensional finite element method. In: 2010 International Conference on Computational Information Sciences, pp. 420–423. doi:10.1109/ICCIS.2010.109

Download references

Acknowledgements

This paper was made possible by NPRP grant #6 - 292 - 2 - 127 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. The authors also wish to acknowledge the Global Human Body Model Consortium (exclusively distributed by Elemance LLC Winston Salem, NC, USA) for using the 50th percentile seated male FE model. Finally, the authors wish to thank Dr. Stewart McLachlin for his help obtaining the GHBMC FE model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Meguid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M.T.Z., Meguid, S.A. Effect of seat belt and head restraint on occupant’s response during rear-end collision. Int J Mech Mater Des 14, 231–242 (2018). https://doi.org/10.1007/s10999-017-9373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-017-9373-6

Keywords

Navigation