Skip to main content
Log in

A multisurface constitutive model for highly cross-linked polymers with yield data obtained from molecular dynamics simulations

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

Constitutive properties for highly cross-linked glassy polymers are currently determined by molecular dynamics (MD) simulations. This avoids the need for ad-hoc experimentation. Constitutive data in functional form, such as yield surfaces, still require identification and correspondence to an existing function. In addition, loss of information occurs with fitting procedures. The present alternative consists in directly defining piecewise-linear yield functions from a set of points obtained by MD simulations. To prevent the algorithmic issues of multisurface plasticity, we propose an alternative to active-set strategies by simultaneously including all yield functions regardless of being active. We smooth the complementarity conditions using the Chen–Mangasarian function. In addition, extrapolation is proposed for slowly-evolving quantities such as the effective plastic strain while fully implicit integration is adopted for rapidly-evolving constitutive quantities. Since polymers exhibit finite-strain behavior, we propose a semi-implicit integration algorithm which allows a small number of steps to be used up to very large strains. Experimentally-observed effects herein considered are: thermal effects on strain (i.e. thermal expansion), Young’s modulus dependence on temperature and the effects of strain rate and temperature on the yield stress. A prototype model is first studied to assess the performance of the integration algorithm, followed by a experimental validation and a fully-featured, thermally-coupled 2D example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We use standard notation in continuum mechanics (Truesdell and Noll 2004).

  2. Both elastic and inelastic terms contribute to \(\Delta \check{\varvec{S}}_{ab}.\)

References

  • Areias, P., Belytschko, T.: Analysis of finite strain anisotropic elastoplastic fracture in thin plates and shells. J. Aerosp. Eng. 19(4), 259–270 (2006)

    Article  Google Scholar 

  • Areias, P., Rabczuk, T.: Smooth finite strain plasticity with non-local pressure support. Int.J. Numer. Methods Eng. 81, 106–134 (2010)

    MATH  Google Scholar 

  • Areias, P., Dias-da-Costa, D., Pires, E.B., Infante Barbosa, J.: A new semi-implicit formulation for multiple-surface flow rules in multiplicative plasticity. Comput. Mech. 49, 545–564 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Areias, P., Dias-da Costa, D., Sargado, J.M., Rabczuk, T.: Element-wise algorithm for modeling ductile fracture with the Rousselier yield function. Comput. Mech. 52, 1429–1443 (2013)

    Article  MATH  Google Scholar 

  • Areias, P., Rabczuk, T., de Sá, JCésar: Semi-implicit finite strain constitutive integration of porous plasticity models. Finite Elem. Anal. Des. 104, 41–55 (2015a)

    Article  Google Scholar 

  • Areias, P., Rabczuk, T., de Sá, JMCésar, Garção, J.E.: Finite strain quadrilateral shell using least-squares fit of relative lagrangian in-plane strains. Finite Elem. Anal. Des. 98, 26–40 (2015b)

    Article  MathSciNet  Google Scholar 

  • Argon, A.S.: A theory for the low-temperature plastic deformation of glassy polymers. Philos. Mag. 28(4), 839–865 (1973)

    Article  Google Scholar 

  • Bouvard, J.L., Ward, D.K., Hossain, D., Nouranian, S., Marin, E.B., Horstemeyer, M.F.: Review of hierarchical multiscale modeling to describe the mechanical behavior of amorphous polymers. J. Eng. Mater. Technol. 131(4), 041206 (2009)

    Article  Google Scholar 

  • Chen, C., Mangasarian, O.L.: Smoothing methods for convex inequalities and linear complementarity problems. Math. Program 71(1), 51–69 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Cook, W.D., Mayr, A.E., Edward, G.H.: Yielding behaviour in model epoxy thermosets-II. Temperature dependence. Polymer 39(16), 3725–3733 (1998)

    Article  Google Scholar 

  • Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineers. Wiley, Hoboken (2000)

    MATH  Google Scholar 

  • Hughes, T.J.R.: The Finite Element Method. Dover Publications, Mineola (2000) (Reprint of Prentice-Hall edition (1987))

  • Johnson, G.R., Cook. W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, pp. 541–547 (1983)

  • Korelc, J.: Multi-language and multi-environment generation of nonlinear finite element codes. Eng. Comput. 18(4), 312–327 (2002)

    Article  Google Scholar 

  • Lee, E.H.: Elasto-plastic deformation at finite strains. J. Appl. Mech. ASME 36, 1–6 (1969)

    Article  MATH  Google Scholar 

  • Mayr, A.E., Cook, W.D., Edward, G.H.: Yielding behaviour in model epoxy thermosets-I. Effect of strain rate and composition. Polymer 39(16), 3719–3724 (1998)

    Article  Google Scholar 

  • Plimpton, Steve: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  MATH  Google Scholar 

  • Poulain, X., Benzerga, A.A., Goldberg, R.K.: Finite-strain elasto-viscoplastic behavior of an epoxy resin: experiments and modeling in the glassy regime. Int. J. Plast. 62, 138–161 (2014)

    Article  Google Scholar 

  • Wolfram Research Inc. Mathematica (2007)

  • Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Berlin, Corrected Second Printing edition (2000)

  • Stachurski, Z.H.: Deformation mechanisms and yield strength in amorphous polymers. Prog. Polym. Sci. 22, 407–474 (1997)

    Article  Google Scholar 

  • Sundaraghavan, V., Kumar, A.: Molecular dynamics simulations of compressive yielding in cross-linked epoxies in the context of argon theory. Int. J. Plast. 47, 111–125 (2013)

    Article  Google Scholar 

  • Taylor, G.I., Quinney, H.: The latent energy remaining in metal after cold working. Proc. R. Soc. A413, 307–326 (1934)

    Article  Google Scholar 

  • Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  • Vu-Bac, N., Bessa, M.A., Rabczuk, Timon, Liu, Wing Kam: A multiscale model for the quasi-static thermo-plastic behavior of highly cross-linked glassy polymers. Macromolecules 48(18), 6713–6723 (2015)

    Article  Google Scholar 

  • Vu-Bac, N., Areias, P., Rabczuk, T.: A multiscale multisurface constitutive model for the thermo-plastic behavior of polyethylene. Polymer 105, 327–338 (2016)

    Article  Google Scholar 

  • Wernik, J.M., Meguid, S.A.: Coupling atomistics and continuum in solids: status, prospects, and challenges. Int. J. Mech. Mater. Des. 5, 79–110 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Areias.

Appendix

Appendix

Concerning the result (12), and ignoring the body force term for conciseness, we have the integration by parts formula:

$$\begin{aligned} \int _{\Omega _{b}}\nabla _{b}\cdot (\varvec{F}_{ab}\varvec{S}_{ab})^{T}\cdot \dot{\varvec{u}}\mathrm {d}\Omega _{b} & = -\int _{\Omega _{b}}\left( \varvec{F}_{ab}\varvec{S}_{ab}\right) ^{T}\cdot \nabla _{b}\dot{\varvec{u}}\mathrm {d}\Omega _{b}+\int _{\Gamma _{t}}J_{ab}\overline{\varvec{t}}\cdot \dot{\varvec{u}}\mathrm {d}\Gamma _{t}\Leftrightarrow \\ & = {-{\int }}_{\Omega _{b}}\left( \varvec{S}_{ab}\varvec{F}_{ab}^{T}\right) \cdot \nabla _{b}\dot{\varvec{u}}\mathrm {d}\Omega _{b}+\int _{\Gamma _{t}}J_{ab}\overline{\varvec{t}}\cdot \dot{\varvec{u}}\mathrm {d}\Gamma _{t}\quad (\text {since }\varvec{S}_{ab}=\varvec{S}_{ab}^{T})\Leftrightarrow \\ & = {-{\int }}_{\Omega _{b}}\left( \left[ \varvec{S}_{ab}\right] _{ij}\left[ \varvec{F}_{ab}\right] _{kj}\right) \left[ \nabla _{b}\dot{\varvec{u}}\right] _{ik}\mathrm {d}\Omega _{b}+\int _{\Gamma _{t}}J_{ab}\overline{\varvec{t}}\cdot \dot{\varvec{u}}\mathrm {d}\Gamma _{t}\quad (\text {in components}){{\Leftrightarrow }}\\ & = {-{\int }}_{\Omega _{b}}\left[ \varvec{S}_{ab}\right] _{ij}\left[ \nabla _{b}\dot{\varvec{u}}\right] _{ik}\left[ \varvec{F}_{ab}\right] _{kj}\mathrm {d}\Omega _{b}+\int _{\Gamma _{t}}J_{ab}\overline{\varvec{t}}\cdot \dot{\varvec{u}}\mathrm {d}\Gamma _{t} \end{aligned}$$

since \(\varvec{e}_{ab}=\frac{1}{2}\left( \varvec{F}_{ab}^{T}\varvec{F}_{ab}-\varvec{I}\right)\) and \(\dot{\varvec{e}}_{ab}=\frac{1}{2}\left( \dot{\varvec{F}}_{ab}^{T}\varvec{F}_{ab}+\varvec{F}_{ab}^{T}\varvec{F}_{ab}\right)\) but \(\dot{\varvec{F}}_{ab}{={\nabla }}_{b}\dot{\varvec{u}}_{a}\) we have

$$\begin{aligned} {\int }_{\Omega _{b}}\left[ \varvec{S}_{ab}\right] _{ij}\left[ \dot{\varvec{F}}_{ab}\right] _{ik}\left[ \varvec{F}_{ab}\right] _{kj}\mathrm {d}\Omega _{b}&=\int _{\Gamma _{i}}J_{ab}\overline{\varvec{t}}\cdot \dot{\varvec{u}}\mathrm {d}\Gamma _{t} \end{aligned}$$
(60)

However, symmetry of \(\varvec{S}_{ab}\) results in: \(\left[ \varvec{S}_{ab}\right] _{ij}\left[ \dot{\varvec{F}}_{ab}\right] _{ik}\left[ \varvec{F}_{ab}\right] _{kj}=\left[ \varvec{S}_{ab}\right] _{ij}\left[ \dot{\varvec{F}}_{ab}\right] _{jk}\left[ \varvec{F}_{ab}\right] _{ki}\) which implies that

$$\begin{aligned} {\int }_{\Omega _{b}}\left[ \varvec{S}_{ab}\right] _{ij}\left[ \dot{\varvec{F}}_{ab}\right] _{ik}\left[ \varvec{F}_{ab}\right] _{kj}\mathrm {d}\Omega _{b}&= {\int }_{\Omega _{b}}\left[ \varvec{S}_{ab}\right] _{ij}\underbrace{\frac{1}{2}\left\{ \left[ \dot{\varvec{F}}_{ab}\right] _{ik}\left[ \varvec{F}_{ab}\right] _{kj}+\left[ \dot{\varvec{F}}_{ab}\right] _{jk}\left[ \varvec{F}_{ab}\right] _{ki}\right\} }_{\left[ \dot{\varvec{e}}_{ab}\right] _{ij}}\mathrm {d}\Omega _{b}\Leftrightarrow \end{aligned}$$
(61)
$$\begin{aligned} {\int }_{\Omega _{b}}\text {tr}\left[ \varvec{S}_{ab}^{T}\dot{\varvec{e}}_{ab}\right] \mathrm {d}\Omega _{b}&=\int _{\Gamma _{t}}J_{ab}\overline{\varvec{t}}\cdot \dot{\varvec{u}}\mathrm {d}\Gamma _{t} \end{aligned}$$
(62)

Finally, by using Voigt notation for \(\varvec{S}_{ab}\) and \(\dot{\varvec{e}}_{ab}\),

$$\begin{aligned} \int _{\Omega _{b}}\mathbf {S}_{ab}^{T}\dot{\mathbf {e}}_{ab}\mathrm {d}\Omega _{b}=\int _{\Gamma _{t}}J_{ab}\overline{\varvec{t}}\cdot \dot{\varvec{u}}\mathrm {d}\Gamma _{t} \end{aligned}$$
(63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Areias, P., Vu-Bac, N. & Rabczuk, T. A multisurface constitutive model for highly cross-linked polymers with yield data obtained from molecular dynamics simulations. Int J Mech Mater Des 14, 21–36 (2018). https://doi.org/10.1007/s10999-016-9358-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-016-9358-x

Keywords

Navigation