Skip to main content
Log in

Reducible cubic CNS polynomials

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

The concept of a canonical number system can be regarded as a natural generalization of decimal representations of rational integers to elements of residue class rings of polynomial rings. Generators of canonical number systems are CNS polynomials which are known in the linear and quadratic cases, but whose complete description is still open. In the present note reducible CNS polynomials are treated, and the main result is the characterization of reducible cubic CNS polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Akiyama, T. Borbély, H. Brunotte, A. Pethő and J. M. Thuswaldner, On a generalization of the radix representation — a survey, High Primes and Misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Institute Commucations 41, 2004, 19–27.

  2. S. Akiyama, T. Borbély, H. Brunotte, A. Pethő and J. M. Thuswaldner, Generalized radix representations and dynamical systems I, Acta Math. Hungar., 108(3) (2005), 207–238.

    Article  MATH  MathSciNet  Google Scholar 

  3. S. Akiyama, H. Brunotte, A. Pethő and J. M. Thuswaldner, Generalized radix representations and dynamical systems II, Acta Arith., 121 (2006), 21–61.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Akiyama, H. Brunotte and A. Pethő, Cubic CNS polynomials, notes on a conjecture of W.J. Gilbert, J. Math. Anal. Appl., 281 (2003), 402–415.

    MATH  MathSciNet  Google Scholar 

  5. S. Akiyama and A. Pethő, On canonical number systems, Theoret. Comput. Sci., 270 (2002), 921–933.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Akiyama and H. Rao, New criteria for canonical number systems, Acta Arith., 111 (2004), 5–25.

    MATH  MathSciNet  Google Scholar 

  7. G. Barat, V. Berthé, P. Liardet and J. Thuswaldner, Dynamical directions in numeration, Ann. Inst. Fourier Université Joseph Fourier Grenoble, 56 (2006), 1987–2092.

    MATH  Google Scholar 

  8. H. Brunotte, On cubic CNS polynomials with three real roots, Acta Sci. Math. (Szeged), 70 (2004), 495–504.

    MATH  MathSciNet  Google Scholar 

  9. H. Brunotte, A. Huszti and A. Pethő, Bases of canonical number systems in quartic algebraic number fields, J. Théor. Nombres Bordeaux, 18 (2006), 537–557.

    MATH  MathSciNet  Google Scholar 

  10. W. J. Gilbert, Radix representations of quadratic fields, J. Math. Anal. Appl., 83 (1981), 264–274.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. H. Grossman, Number bases in quadratic fields, Studia Sci. Math. Hungar., 20 (1985), 55–58.

    MATH  MathSciNet  Google Scholar 

  12. D. M. Kane, Generalized base representations, J. Number Theory, 120 (2006), 92–100.

    Article  MATH  MathSciNet  Google Scholar 

  13. I. Kátai and B. Kovács, Kanonische Zahlensysteme in der Theorie der quadratischen algebraischen Zahlen, Acta Sci. Math. (Szeged), 42 (1980), 99–107.

    MATH  MathSciNet  Google Scholar 

  14. I. Kátai and J. Szabó, Canonical number systems for complex integers, Acta Sci. Math. (Szeged), 37 (1975), 255–260.

    MATH  MathSciNet  Google Scholar 

  15. B. Kovács, Canonical number systems in algebraic number fields, Acta Math. Acad. Sci. Hungar., 37 (1981), 405–407.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. (Szeged), 55 (1991), 287–299.

    MathSciNet  MATH  Google Scholar 

  17. M. Mignotte and D. Ştefănescu, Polynomials — An algorithmic approach, Springer, Berlin-Heidelberg-New York, 1999.

    MATH  Google Scholar 

  18. A. Pethő, On a polynomial transformation and its application to the construction of a public key cryptosystem, Computational Number Theory, Proc., Eds.: A. Pethő, M. Pohst, H. G. Zimmer and H. C. Williams, Walter de Gruyter Publ. Comp. 1991, 31–43.

  19. A. Pethő, Notes on CNS polynomials and integral interpolation, More sets, graphs and numbers, Bolyai Soc. Math. Stud. 15, Springer, Berlin, 2006, 301–315.

    Google Scholar 

  20. A. Pethő, Connections between power integral bases and radix representations in algebraic number fields, Yokoi-Chowla Conjecture and Related Problems, Proc. of the 2003 Nagoya Conf., Furukawa Total Pr. Co., 2004, 115–125.

  21. K. Scheicher and J. M. Thuswaldner, On the characterization of canonical number systems, Osaka J. Math., 41 (2004), 327–351.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Akiyama.

Additional information

Communicated by András Sárközy

Supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology, Grand-in Aid for fundamental research 18540022, 2006–2008.

Supported partially by the Hungarian NFSR Grant No. K67580.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akiyama, S., Brunotte, H. & Pethő, A. Reducible cubic CNS polynomials. Period Math Hung 55, 177–183 (2007). https://doi.org/10.1007/s10998-007-4177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-007-4177-y

Mathematics subject classification number

Key words and phrases

Navigation