Skip to main content
Log in

Hierarchical U-net with re-parameterization technique for spatio-temporal weather forecasting

  • Published:
Machine Learning Aims and scope Submit manuscript

Abstract

Due to the considerable computational demands of physics-based numerical weather prediction, especially when modeling fine-grained spatio-temporal atmospheric phenomena, deep learning methods offer an advantageous approach by leveraging specialized computing devices to accelerate training and significantly reduce computational costs. Consequently, the application of deep learning methods has presented a novel solution in the field of weather forecasting. In this context, we introduce a groundbreaking deep learning-based weather prediction architecture known as Hierarchical U-Net (HU-Net) with re-parameterization techniques. The HU-Net comprises two essential components: a feature extraction module and a U-Net module with re-parameterization techniques. The feature extraction module consists of two branches. First, the global pattern extraction employs adaptive Fourier neural operators and self-attention, well-known for capturing long-term dependencies in the data. Second, the local pattern extraction utilizes convolution operations as fundamental building blocks, highly proficient in modeling local correlations. Moreover, a feature fusion block dynamically combines dual-scale information. The U-Net module adopts RepBlock with re-parameterization techniques as the fundamental building block, enabling efficient and rapid inference. In extensive experiments carried out on the large-scale weather benchmark dataset WeatherBench at a resolution of 1.40625\(^\circ \), the results demonstrate that our proposed HU-Net outperforms other baseline models in both prediction accuracy and inference time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Algorithm 2
Fig. 7

Similar content being viewed by others

Availability of data and materials

This article uses the weather prediction public dataset WeatherBeach, a widely used and publicly available dataset.

Code availability

https://github.com/xubaowen521/HU-Net.git

References

  • Alley, R. B., Emanuel, K. A., & Zhang, F. (2019). Advances in weather prediction. Science, 363(6425), 342–344.

    Article  Google Scholar 

  • Arakawa, A. (2004). The cumulus parameterization problem: Past, present, and future. Journal of Climate, 17(13), 2493–2525.

    Article  Google Scholar 

  • Bauer, P., Quintino, T., Wedi, N., Bonanni, A., Chrust, M., Deconinck, W., Diamantakis, M., Düben, P., English, S., & Flemming, J. et al. (2020). The ECMWF scalability programme: Progress and plans. European Centre for Medium Range Weather Forecasts.

  • Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47–55.

    Article  Google Scholar 

  • Betts, A. (1973). Non-precipitating cumulus convection and its parameterization. Quarterly Journal of the Royal Meteorological Society, 99(419), 178–196.

    Google Scholar 

  • Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q. ( 2022) Pangu-weather: A 3d high-resolution model for fast and accurate global weather forecast. arXiv preprint arXiv:2211.02556..

  • Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., G. Heigold, G., & Gelly S. et al., (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

  • Ganaie, M. A., Hu, M., Malik, A., Tanveer, M., & Suganthan, P. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115, 105151.

    Article  Google Scholar 

  • Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H. R., & Xu, D. (2021). Swin unetr: Swin transformers for semantic segmentation of brain tumors in mri images. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes. (2021). Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021. Revised Selected Papers, Part I.,2022, 272–284.

  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning. Image Recognition, vol. 7.

  • Hu, Y., Chen, L., Wang, Z., & Li, H. (2023). Swinvrnn: A data-driven ensemble forecasting model via learned distribution perturbation. Journal of Advances in Modeling Earth Systems, 15(2), e2022MS003211.

    Article  Google Scholar 

  • Keisler, R. (2022). Forecasting global weather with graph neural networks. arXiv preprint arXiv:2202.07575.

  • Lin, H., Gao, Z., Xu, Y., Wu, L., Li, L., & Li, S. Z. (2022). Conditional local convolution for spatio-temporal meteorological forecasting. Proceedings of the AAAI Conference on Artificial Intelligence, 36(7), 7470–7478.

    Article  Google Scholar 

  • Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 10012–10022.

  • Lynch, P. (2008). The origins of computer weather prediction and climate modeling. Journal of Computational Physics, 227(7), 3431–3444.

    Article  MathSciNet  Google Scholar 

  • Molteni, F., Buizza, R., Palmer, T. N., & Petroliagis, T. (1996). The ecmwf ensemble prediction system: Methodology and validation. Quarterly Journal of the Royal Meteorological Society, 122(529), 73–119.

    Article  Google Scholar 

  • Nguyen, T., Brandstetter, J., Kapoor, A., Gupta, J. K., & Grover, A. (2023). Climax: A foundation model for weather and climate. arXiv preprint arXiv:2301.10343.

  • Pathak, J., Subra manian, S., Harrington, P., Raja, S., Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z., & Azizzadenesheli K. et al.,(2022) Fourcastnet: A global data-driven high-resolution weather model using adaptive fourier neural operators. arXiv preprint arXiv:2202.11214.

  • Pincus, R., Barker, H. W., & Morcrette, J.-J.(2003). A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. Journal of Geophysical Research: Atmospheres, vol. 108, no. D13, .

  • Randall, D., Khairoutdinov, M., Arakawa, A., & Grabowski, W. (2003). Breaking the cloud parameterization deadlock. Bulletin of the American Meteorological Society, 84(11), 1547–1564.

    Article  Google Scholar 

  • Rasp, S., Thuerey, N. (2021) Data-driven medium-range weather prediction with a resnet pretrained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling Earth Systems, vol. 13, no. 2, p. e2020MS002405.

  • Rasp, S., Dueben, P. . D., Scher, S., Weyn, J. . A., Mouatadid, S., & Thuerey, N. (2020). Weatherbench: A benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems, 12(11), e2020MS002203.

    Article  Google Scholar 

  • Ritchie, H., Temperton, C., Simmons, A., Hortal, M., Davies, T., Dent, D., & Hamrud, M. (1995). Implementation of the semi-lagrangian method in a high-resolution version of the ecmwf forecast model. Monthly Weather Review, 123(2), 489–514.

    Article  Google Scholar 

  • Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation,in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015. Proceedings, Part,III(18), 234–241.

  • Ronneberger, O, Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., W. M. W. III, & Frangi, A. F., (Eds.), Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015—18th International Conference Munich, Germany, October 5 - 9, 2015, Proceedings, Part III, ser. Lecture Notes in Computer Science, vol. 9351. Springer, , pp. 234–241.

  • Schultz, M. G., Betancourt, C., Gong, B., Kleinert, F., Langguth, M., Leufen, L. H., Mozaffari, A., & Stadtler, S. (2021). Can deep learning beat numerical weather prediction? Philosophical Transactions of the Royal Society A, 379(2194), 20200097.

    Article  MathSciNet  Google Scholar 

  • Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., & Woo, W.-c. (2015) Convolutional lstm network: A machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems, vol. 28, .

  • Weyn, J. A., Durran, D. R., Caruana, R., & Cresswell-Clay, N. (2021) Sub-seasonal forecasting with a large ensemble of deep-learning weather prediction models. Journal of Advances in Modeling Earth Systems, vol. 13, no. 7, p. e2021MS002502.

Download references

Funding

This work is supported by National Key Research and Development Program of China [Grant 2022YFB3305401] and the National Nature Science Foundation of China [Grant 62003344]

Author information

Authors and Affiliations

Authors

Contributions

BX: Methodology, Validation, Formal analysis, Writing original draft, Visualization; XW, SL, JL and CL: Resources, Writing—review and editing, Supervision.

Corresponding author

Correspondence to Baowen Xu.

Ethics declarations

Conflict of interest

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Editors: Vu Nguyen, Dani Yogatama.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B., Wang, X., Li, J. et al. Hierarchical U-net with re-parameterization technique for spatio-temporal weather forecasting. Mach Learn (2024). https://doi.org/10.1007/s10994-023-06445-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10994-023-06445-3

Keywords

Navigation