Skip to main content
Log in

Intuitionistic Mereology II: Overlap and Disjointness

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

This paper extends the axiomatic treatment of intuitionistic mereology introduced in Maffezioli and Varzi (Synthese, 198(S18), 4277–4302 2021) by examining the behavior of constructive notions of overlap and disjointness. We consider both (i) various ways of defining such notions in terms of other intuitionistic mereological primitives, and (ii) the possibility of treating them as mereological primitives of their own.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baroni, M. A. (2005). Constructive suprema. Journal of Universal Computer Science, 11, 1865–1877.

    Google Scholar 

  2. Bishop, E., & Bridges, D. S. (1985). Constructive Analysis. Berlin: Springer.

    Book  Google Scholar 

  3. Brouwer, L. E. J. (1919). Begründung der Mengenlehre unabhängig vom logischen Satz vom ausgeschlossenen Dritten. Zweiter Teil: Theorie der punktmengen. Koninklijke Akademie van Wetenschappen te Amsterdam. Verhandelingen (Eerste Sectie), 7, 1–33.

    Google Scholar 

  4. Brouwer, L. E. J. (1923). Intuïtionistische splitsing van mathematische grondbegrippen. Koninklijke Akademie van Wetenschappen te Amsterdam. Verslagen, 32, 877–880. English translation by W. P. van Stigt (1998), Intuitionist splitting of the fundamental notions of mathematics, in P. Mancosu (ed.) From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s (pp. 286–289), Oxford: Oxford University Press.

    Google Scholar 

  5. Ciraulo, F. (2013). Intuitionistic overlap structures. Logic and Logical Philosophy, 22, 201–212.

    Article  Google Scholar 

  6. Ciraulo, F., Maietti, M. E., & Toto, P. (2013). Constructive version of Boolean algebra. Logic Journal of the IJPL, 21, 44–62.

    Google Scholar 

  7. Ciraulo, F., & Contente, M. (2020). Overlap algebras: A constructive look at complete Boolean algebras. Logical Methods in Computer Science, 16, 1–13.

    Google Scholar 

  8. Cotnoir, A. J., & Varzi, A. C. (2021). Mereology. Oxford: Oxford University Press.

    Book  Google Scholar 

  9. De Risi, V. (2020). Did Euclid prove Elements I,1? The early modern debate on intersections and continuity. In P. Beeley, Y. Nasifoglu, & B. Wardhaugh (Eds.). Reading Mathematics in Early Modern Europe (pp. 12–32). New York: Routledge.

  10. De Risi, V. (2021). Gapless lines and gapless proofs: Intersections and continuity in Euclid’s Elements. Apeiron, 54, 233–259.

    Article  Google Scholar 

  11. Gentzen, G. (1935). Untersuchungen über das logische Schliessen. Mathematische Zeitschrift, 39, 176–210, 405–431. Eng. trans. by M. E. Szabo (1964–1965) Investigations into logical deduction, American Philosophical Quarterly, 1, 288–306 and 2, 204–218.

    Article  Google Scholar 

  12. Goodman, N. (1951). The Structure of Appearance. Cambridge (MA): Harvard University Press. Third edition: Dordrecht: Reidel, 1977.

    Google Scholar 

  13. Goodman, N., & Myhill, J. (1978). Choice implies excluded middle. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 24, 461.

    Article  Google Scholar 

  14. Heath, T. L. (1908). The Thirteen Books of Euclid’s Elements. Cambridge: Cambridge University Press.

    Google Scholar 

  15. Heyting, A. (1928). Zur intuitionistischen Axiomatik der projektiven Geometrie. Mathematische Annalen, 98, 491–538.

    Article  Google Scholar 

  16. Heyting, A. (1956). Intuitionism. An Introduction, Amsterdam: North-Holland.

  17. Hilbert, D. (1899). Grundlagen der Geometrie, Leipzig: Teubner. Tenth edition, revised and enlarged by P. Bernays (1968). English translation by L. Unger (1971), Foundations of Geometry, La Salle (IL): Open Court.

  18. Hovda, P. (2009). What is classical mereology?. Journal of Philosophical Logic, 38, 55–82.

    Article  Google Scholar 

  19. Jankov, V. A. (1968). Calculus of the weak law of the excluded middle. Mathematics of the USSR – Izvestiya, 2, 997–1004.

    Article  Google Scholar 

  20. Kripke, S. A. (1965). Semantical analysis of intuitionistic logic I. In Crossley J. N. M. A. E. Dummett (Eds.). Formal Systems and Recursive Functions. Proceedings of the 8th Logic Colloquium (pp. 92–130). Amsterdam: North-Holland.

  21. Leonard, H. S., & Goodman, N (1940). The calculus of individuals and its uses. The Journal of Symbolic Logic, 5, 45–55.

    Article  Google Scholar 

  22. Leśniewski, S. (1916). Podstawy ogólnej teoryi mnogości. I, Moskow: Prace Polskiego Koła Naukowego w Moskwie. English translation by D. I. Barnett (1992) Foundations of the general theory of sets I. In Collected Works (pp. 129–173), edited by S. J. Surma, J. T. Srzednicki, D. I. Barnett, & F. V. Rickey, Dordrecht: Kluwer.

  23. Leśniewski, S. (1927). O podstawach matematyki, Przegląd Filozoficzny, 30:164–206; 31:261–291; 32:60–101; 33:77–105; 34:142–170. English translation by D. I. Barnett (1992) On the foundations of mathematics, in Collected Works (pp. 174–382), edited by S. J. Surma, J. T. Srzednicki, D. I. Barnett, & F. V. Rickey, Dordrecht: Kluwer.

  24. Maffezioli, P., & Varzi, A. C. (2021). Intuitionistic mereology. Synthese, 198(S18), 4277–4302.

    Article  Google Scholar 

  25. Myhill, J. (1975). Constructive set theory. The Journal of Symbolic Logic, 40, 347–382.

    Article  Google Scholar 

  26. Negri, S. (1999). Sequent calculus proof theory of intuitionistic apartness and order relations. Archive for Mathematical Logic, 38, 521–547.

    Article  Google Scholar 

  27. Parsons, J. (2014). The many primitives of mereology. In S. Kleinschmidt (Ed.). Mereology and Location (pp. 3–12). Oxford: Oxford University Press.

  28. Pietruszczak, A. (2000). Metamereology. Toruń: Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika. Revised English edition (2018) Metamereology. Toruń: Nicolaus Copernicus University Publishing House.

  29. Pietruszczak, A. (2015). Classical mereology is not elementarily axiomatizable. Logic and Logical Philosophy, 24, 485–498.

    Google Scholar 

  30. von Plato, J. (1999). Order in open intervals of computable reals. Mathematical Structures in Computer Science, 9, 103–108.

    Article  Google Scholar 

  31. von Plato, J. (2001). Positive lattices. In P. Schuster, U. Berger, & H. Osswald (Eds.). Reuniting the Antipodes. Constructive and Nonstandard Views of the Continuum (pp. 185–197). Dordrecht: Kluwer.

  32. Sambin, G. (Forthcoming). The Basic Picture. Structures for Constructive Topology. Oxford: Oxford University Press.

  33. Scott, D. (1968). Extending the topological interpretation to intuitionistic analysis. Compositio Mathematica, 20, 194–210.

    Google Scholar 

  34. Simons, P. M. (1987). Parts. A Study in Ontology. Oxford: Clarendon Press.

    Google Scholar 

  35. Tarski, A. (1959). What is elementary geometry?. In L. Henkin, P. Suppes, & A. Tarski (Eds.) The Axiomatic Method, with Special Reference to Geometry and Physics. Proceedings of an International Symposium (pp. 16–29). Amsterdam: North-Holland.

  36. Tennant, N. (2020). Does choice really imply excluded middle? Part I: Regimentation of the Goodman-Myhill result, and its immediate reception. Philosophia Mathematica, 28, 139–171.

    Article  Google Scholar 

  37. Tennant, N. (2021). Does choice really imply excluded middle? Part II: Historical, philosophical, and foundational reflections on the Goodman-Myhill result. Philosophia Mathematica, 29, 28–63.

    Article  Google Scholar 

  38. Troelstra, A. S., & van Dalen, D. (1988). Constructivism in Mathematics. An Introduction. Volume I. Amsterdam: North-Holland.

  39. Tsai, H. -C. (2018). General extensional mereology is finitely axiomatizable. Studia Logica, 106, 809–826.

    Article  Google Scholar 

  40. van Dalen, D. (1996). Outside as a primitive notion in constructive projective geometry. Geometriae Dedicata, 60, 107–111.

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed jointly and equally to the preparation of this manuscript.

Corresponding author

Correspondence to Achille C. Varzi.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies involving human or animal subjects. Our institutions do not require ethical approval for publishing the material contained in this manuscript.

Competing interests

The authors have no competing interests to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maffezioli, P., Varzi, A.C. Intuitionistic Mereology II: Overlap and Disjointness. J Philos Logic 52, 1197–1233 (2023). https://doi.org/10.1007/s10992-023-09703-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-023-09703-w

Keywords

Navigation