Skip to main content
Log in

Neighbourhood Semantics for Modal Relevant Logics

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

In this paper, we investigate neighbourhood semantics for modal extensions of relevant logics. In particular, we combine the neighbourhood interpretation of the relevant implication (and related connectives) with a neighbourhood interpretation of modal operators. We prove completeness for a range of systems and investigate the relations between neighbourhood models and relational models, setting out a range of augmentation conditions for the various relations and operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, A. R., & Belnap, N.D. (1975). Entailment, the logic of relevance and necessity (Vol. I). Princeton: Princeton University Press.

    Google Scholar 

  2. Anderson, A.R., Belnap, N.D., & Dunn, J.M. (1992). Entailment. Princeton: Princeton University Press.

    Google Scholar 

  3. Bimbó, K., & Dunn, J. M. (2008). Generalized Galois logics: relational semantics for non-classical logical calculi. CSLI Publications. Palo Alto.

  4. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  5. Brady, R. T. (1984). Natural deduction systems for some quantified relevant logics. Logique et Analyse, 27, 355–377.

    Google Scholar 

  6. Bull, R. A. (1966). MIPC as the formalisation of an intuitionist concept of modality. Journal of Symbolic Logic, 31(4), 609–616.

    Article  Google Scholar 

  7. Chellas, B. (1980). Modal logic: an introduction. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  8. Dunn, J.M. (1991). Gaggle theory: an abstraction of galois connections and residuation, with applications to negation, and various logical operators. In J. van Eijck (Ed.) Logics in AI: European workshop JELIA ’90 (pp. 31–51). Dordrecht.

  9. Dunn, J.M. (1995). Positive modal logic. Studia Logica, 55, 301–317.

    Article  Google Scholar 

  10. Ferenz, N. (2019). Quantified modal relevant logics. Ph.D. Dissertation, University of Alberta.

  11. Ferenz, N. (Forthcoming). Quantified modal relevant logics. Review of Symbolic Logic.

  12. Fuhrmann, A. (1988). Relevant logics, modal logics and theory change. PhD Dissertation, Australian National University.

  13. Fuhrmann, A. (1990). Models for relevant modal logic. Studia Logica, 49(4), 501–514.

    Article  Google Scholar 

  14. Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated lattices: an algebraic glimpse at substructural logics. Amsterdam: Elsevier.

    Google Scholar 

  15. Goble, L. (2000). An incomplete relevant modal logic. Journal of Philosophical Logic, 29(1), 103–119.

    Article  Google Scholar 

  16. Goble, L. (2003). Neighborhoods for entailment. Journal of Philosophical Logic, 32, 483–529.

    Article  Google Scholar 

  17. Golblatt, R. (2011). Quantifiers, propositions and identity: admissible semantics for quantified modal and substructural logics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  18. Hughes, G. E., & Cresswell, M.J. (1996). A new introduction to modal logic. London: Routledge.

    Book  Google Scholar 

  19. Lavers, P. (1985). Generating intensional logics. M.A. Thesis, University of Adelaide.

  20. Maksimova, L. (1973). A semantics for the calculus E of entailment. Bulletin of the Section of Logic, 2, 18–21.

    Google Scholar 

  21. Mares, E. D. (1992). The semantic completeness of RK. Reports on Mathematical Logic, 26, 3–10.

    Google Scholar 

  22. Mares, E.D. (1993). Classically complete modal relevant logics. Mathematical Logic Quarterly, 39, 165–177.

    Article  Google Scholar 

  23. Mares, E.D. (1993). The semantics of r4. Journal of Philosophical Logic, 22(1), 95–110.

    Article  Google Scholar 

  24. Mares, E.D. (1994). Mostly meyer modal models. Logique et Analyse Nouvelle Série, 37(146), 119–128.

    Google Scholar 

  25. Mares, E.D. (2000). CE is not a conservative extension of e. Journal of Philosophical Logic, 29(3), 263–275.

    Article  Google Scholar 

  26. Mares, E.D. (2000). The incompleteness of RGL. Studia Logica, 65(3), 315–322.

    Article  Google Scholar 

  27. Mares, E.D. (2003). Halldén-completeness and modal relevant logic. Logique et Analyse Nouvelle Série, 46(181), 59–76.

    Google Scholar 

  28. Mares, E.D., & Goldblatt, R. (2006). An alternative semantics for quantified relevant logic. Journal of Symbolic Logic, 71(1), 163–187.

    Article  Google Scholar 

  29. Mares, E.D., & Meyer, R.K. (1992). The admissibility of γ in R4. Notre Dame Journal of Formal Logic, 33(2), 197–206.

    Google Scholar 

  30. Mares, E.D., & Tanaka, K. (2010). Boolean conservative extension results for some modal relevant logics. Australasian Journal of Logic, 8, 31–49.

    Article  Google Scholar 

  31. Meyer, R.K. (1968). Entailment and relevant implication. Logique et Analyse, 11, 472–479.

    Google Scholar 

  32. Meyer, R.K., & Routley, R. (1973). Classical relevant logics I. Studia Logica, 32, 51–68.

    Article  Google Scholar 

  33. Meyer, R.K., & Mares, E.D. (1993). The semantics of entailment 0. In P. Schroeder-Heister K. Došen (Eds.) Substructural logics (pp. 239–258). Oxford: Oxford University Press.

  34. Øgaard, T.F. (2021). Boolean negation and non-conservativity I: relevant modal logics. Logic Journal of the IGPL, 29(3), 340–362.

    Article  Google Scholar 

  35. Pacuit, E. (2017). Neighborhood semantics for modal logic. Dordrecht.

  36. Priest, G., & Sylvan, R. (1992). Simplified semantics for basic relevant logics. Journal of Philosophical Logic, 21(2), 217–232.

    Article  Google Scholar 

  37. Priest, G. (2008). An introduction to non-classical logic. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  38. Restall, G. (1993). Simplified semantics for relevant logics (and some of their rivals). Journal of Philosophical Logic, 22(5), 481–511.

    Article  Google Scholar 

  39. Restall, G. (1995). Information flow and relevant logics. In J. Seligman D. Westerståhl (Eds.) Logic, language, and computation: 1994 proceedings (pp. 463–477). CSLI Publications.

  40. Restall, G. (2000). An introduction to substructural logics. London: Routledge.

    Book  Google Scholar 

  41. Restall, G., & Roy, T. (2009). On permutation in simplified semantics. Journal of Philosophical Logic, 38(3), 333–341.

    Article  Google Scholar 

  42. Routley, R. (1989). Philosophical and linguistic inroads: multiply intensional relevant logics. In J. Norman R.Sylvan (Eds.) Directions in relevant logic (pp. 269–304). Dordrecht.

  43. Routley, R., & Meyer, R.K. (1972). The semantics of entailment II. Journal of Philosophical Logic, 1, 53–73.

    Article  Google Scholar 

  44. Routley, R., & Meyer, R.K. (1973). The semantics of entailment. In H. Leblanc (Ed.) Truth, syntax, and modality (pp. 199–243). North-Holland.

  45. Routley, R., & Meyer, R.K. (1975). Towards a general semantical theory of implication and conditionals. I. Systems with normal conjunctions and disjunctions and aberrant and normal negations. Reports on Mathematical Logic, 4, 67–89.

    Google Scholar 

  46. Routley, R., & Meyer, R.K. (1976). Towards a general semantical theory of implication and conditions. II. Improved negation theory and propositional identity. Reports on Mathematical Logic, 9, 47–62.

    Google Scholar 

  47. Routley, R., & Routley, V. (1972). The semantics of first-degree entailment. Noûs, 6(4), 335–359.

    Article  Google Scholar 

  48. Routley, R., Meyer, R.K., Plumwood, V., & Brady, R.T. (1982). Relevant logics and their rivals (Vol. 1). Atascadero: Ridgeview Publishing.

    Google Scholar 

  49. Savić, N., & Studer, T. (2019). Relevant justification logic. Journal of Applied Logics, 6(2), 396–410.

    Google Scholar 

  50. Sedlár, I., & Punčochář, V. (2019). From positive PDL to its non-classical extensions. Logic Journal of the IGPL, 27(4), 522–542.

    Article  Google Scholar 

  51. Segerberg, K. (1971). An essay in classical modal logic. Ph.D., Dissertation, Stanford.

  52. Seki, T. (2003). A sahlqvist theorem for relevant modal logics. Studia Logica, 73, 383–411.

    Article  Google Scholar 

  53. Seki, T. (2003). General frames for relevant modal logics. Notre Dame Journal of Formal Logic, 44(2), 93–109.

    Article  Google Scholar 

  54. Seki, T. (2009). Completeness of relevant modal logics with disjunctive rules. Reports on Mathematical Logic, 44, 3–18.

    Google Scholar 

  55. Seki, T. (2011). The γ-admissibility of relevant modal logics II—the method using metavaluations. Studia Logica, 97(3), 351–383.

    Article  Google Scholar 

  56. Seki, T. (2012). An algebraic proof of the admissibility of γ in relevant modal logics. Studia Logica, 100(6), 1149–1174.

    Article  Google Scholar 

  57. Seki, T. (2013). Some metacomplete relevant modal logics. Studia Logica, 101(5), 1115–1141.

    Article  Google Scholar 

  58. Seki, T. (2015). Halldén completeness for relevant modal logics. Notre Dame Journal of Formal Logic, 56(2), 333–350.

    Article  Google Scholar 

  59. Standefer, S. (2019). Tracking reasons with extensions of relevant logics. Logic Journal of the IGPL, 27(4), 543–569.

    Article  Google Scholar 

  60. Standefer, S. (2020). Actual issues in relevant logic. Ergo, 7(8), 241–276.

    Google Scholar 

  61. Standefer, S. (Forthcoming). An incompleteness theorem for modal relevant logics. Notre Dame Journal of Formal Logic.

  62. Standefer, S. What is a relevant connective? Journal of Philosophical Logic.

  63. Sylvan, R. (1992). Process and action: relevant theory and logics. Studia Logica, 51(3/4), 379–437.

    Article  Google Scholar 

  64. Sylvan, R., Meyer, R., & Plumwood, V. (2003). Multiplying connectives and multiply intensional logics. In R. Brady (Ed.) Relevant logics and their rivals (Vol. II, pp. 17–37). Hampshire.

  65. Tedder, A. (2021). Information flow in logics in the vicinity of BB. Australasian Journal of Logic, 18(1), 1–24.

    Article  Google Scholar 

  66. Tedder, A., & Ferenz, N. (Forthcoming). Neighbourhood semantics for quantified relevant logics. Journal of Philosophical Logic .

  67. Waagbø, G. (1992). Quantified modal logic with neighborhood semantics. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 38, 491–499.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Ferenz.

Ethics declarations

Conflict of Interest

We have no conflicts of interest to report.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We thank Satoru Niki, Shawn Standefer, and two anonymous referees for comments on earlier versions. Ferenz gratefully acknowledges support by RVO 67985807 and by the Czech Science Foundation project GA22-01137S. Tedder gratefully acknowledges the Alexander von Humboldt foundation for fellowship funding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferenz, N., Tedder, A. Neighbourhood Semantics for Modal Relevant Logics. J Philos Logic 52, 145–181 (2023). https://doi.org/10.1007/s10992-022-09668-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-022-09668-2

Keywords

Navigation