Skip to main content

Advertisement

Log in

The Types and Applications of Peptibodies

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Peptides as drugs are a promising therapeutic method. Peptides modulate diverse biological processes and are synthesized with high purity. Due to their low cell permeability, peptide drugs target extracellular receptors. The peptibody comprises the biologically active Fc region and the peptide itself. Various peptides with specific biological activities have been successfully fused into the Fc region. These peptide-Fc fusions, also known as peptibodies, offer an excellent therapeutic alternative to monoclonal antibodies. They comprise biologically active peptides bound to the Fc region. This approach retains antibodies' beneficial characteristics, especially the enhanced affinity resulting from Fc dimerization and extended plasma residence time. Peptibodies can be produced in Escherichia coli using recombinant methods. In this study, we describe peptibodies and analyze different types of peptibodies collected for research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abuqayyas L, Chen PW, Dos Santos MT, Parnes JR, Doshi S, Dutta S et al (2023) Pharmacokinetics and Pharmacokinetic/Pharmacodynamic properties of Rozibafusp Alfa, a bispecific inhibitor of BAFF and ICOSL: analyses of phase I clinical trials. Clin Pharmacol Ther 114(2):371–380

    Article  PubMed  CAS  Google Scholar 

  • Benjamin W, Sun Y-N (2014) Pharmacokinetics of peptide–Fc fusion proteins. J Pharm Sci 103(1):53–64

    Article  Google Scholar 

  • Berrade L, Camarero JA (2009) Expressed protein ligation: a resourceful tool to study protein structure and function. Cell Mol Life Sci 66:3909–3922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouman-Thio E, Franson K, Miller B, Getsy J, Cohen A, Bai SA et al (2008) A phase I, single and fractionated, ascending-dose study evaluating the safety, pharmacokinetics, pharmacodynamics, and immunogenicity of an erythropoietin mimetic antibody fusion protein (CNTO 528) in healthy male subjects. J Clin Pharmacol 48(10):1197–1207

    Article  PubMed  CAS  Google Scholar 

  • Bugelski P, Capocasale R, Makropoulos D, Marshall D, Fisher P, Lu J et al (2008) CNTO 530: molecular pharmacology in human UT-7EPO cells and pharmacokinetics and pharmacodynamics in mice. J Biotechnol 134(1–2):171–180

    Article  PubMed  CAS  Google Scholar 

  • Bussel JB, Soff G, Balduzzi A, Cooper N, Lawrence T, Semple JW (2021) A review of romiplostim mechanism of action and clinical applicability. Drug Des Dev Ther 15:2243–2268

    Article  Google Scholar 

  • Cavaco M, Castanho MA, Neves V (2018) Peptibodies: an elegant solution for a long-standing problem. Pept Sci 110(1):e23095

    Article  Google Scholar 

  • Cheng LE, Hsu H, Kankam M, Siebers N, Stoltz R, Abuqayyas L et al (2019) 290 Development and first-in-human characterization of an ICOSL and BAFF bispecific inhibitor AMG 570 for SLE treatment. Arch Dis Child

  • Chidipi B, Chang M, Cui M, Abou-Assali O, Reiser M, Pshenychnyi S et al (2022) Bioengineered peptibodies as blockers of ion channels. Proc Natl Acad Sci USA 119(50):e2212564119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cines DB, Yasothan U, Kirkpatrick P (2008) Romiplostim. Nat Rev Drug Discov 7(11):887–889

    Article  PubMed  CAS  Google Scholar 

  • Coxon A, Bolon B, Estrada J, Kaufman S, Scully S, Rattan A et al (2002) Inhibition of interleukin-1 but not tumor necrosis factor suppresses neovascularization in rat models of corneal angiogenesis and adjuvant arthritis. Arthritis Rheum 46(10):2604–2612

    Article  PubMed  CAS  Google Scholar 

  • Coxon A, Bready J, Min H, Kaufman S, Leal J, Yu D et al (2010) Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an angiopoietin-1/2-neutralizing peptibody. Mol Cancer Ther 9(10):2641–2651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cursiefen C, Hofmann-Rummelt C, Küchle M, Schlötzer-Schrehardt U (2003) Pericyte recruitment in human corneal angiogenesis: an ultrastructural study with clinicopathological correlation. Br J Ophthalmol 87(1):101–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Groot AS, Moise L (2007) Prediction of immunogenicity for therapeutic proteins: state of the art. Curr Opin Drug Discov Dev 10(3):332

    Google Scholar 

  • Frontiers Editorial Office (2021) Retraction: The design, characterizations, and tumor angiogenesis inhibition of a multi-epitope peptibody with bFGF/VEGFA. Frontiers Media SA, Lausanne

    Google Scholar 

  • Fujimoto K, Terao K, Cho F, Honjo S (1983) The placental transfer of IgG in the cynomolgus monkey. Jpn J Med Sci Biol 36(3):171–176

    Article  PubMed  CAS  Google Scholar 

  • Fumarola C, Petronini PG, Alfieri R (2018) Impairing energy metabolism in solid tumors through agents targeting oncogenic signaling pathways. Biochem Pharmacol 151:114–125

    Article  PubMed  CAS  Google Scholar 

  • Ghetie V, Ward ES (2002) Transcytosis and catabolism of antibody. Immunol Res 25:97–113

    Article  PubMed  CAS  Google Scholar 

  • Glaesner W, Mark Vick A, Millican R, Ellis B, Tschang SH, Tian Y et al (2010) Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes/metab Res Rev 26(4):287–296

    Article  PubMed  CAS  Google Scholar 

  • Grunberger G, Chang A, Garcia Soria G, Botros F, Bsharat R, Milicevic Z (2012) Monotherapy with the once-weekly GLP-1 analogue dulaglutide for 12 weeks in patients with type 2 diabetes: dose-dependent effects on glycaemic control in a randomized, double-blind, placebo-controlled study. Diabet Med 29(10):1260–1267

    Article  PubMed  CAS  Google Scholar 

  • Guzmán F, Barberis S, Illanes A (2007) Peptide synthesis: chemical or enzymatic. Electron J Biotechnol 10(2):279–314

    Article  Google Scholar 

  • Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, Church WB, Dastmalchi S (2013) Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov Today 18(23–24):1144–1157

    Article  PubMed  CAS  Google Scholar 

  • Hermeling S, Crommelin DJ, Schellekens H, Jiskoot W (2004) Structure–immunogenicity relationships of therapeutic proteins. Pharm Res 21:897–903

    Article  PubMed  CAS  Google Scholar 

  • Huang YF, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y et al (2009) Molecular assembly of an aptamer–drug conjugate for targeted drug delivery to tumor cells. ChemBioChem 10(5):862–868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jendryczko K, Chudzian J, Skinder N, Opaliński Ł, Rzeszótko J, Wiedlocha A et al (2020) FGF2-derived peptibodyF2-MMAE conjugate for targeted delivery of cytotoxic drugs into cancer cells overexpressing FGFR1. Cancers 12(10):2992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jendryczko K, Rzeszotko J, Krzyscik MA, Kocyła A, Szymczyk J, Otlewski J et al (2022) Drug conjugation via maleimide–thiol chemistry does not affect targeting properties of cysteine-containing anti-FGFR1 peptibodies. Mol Pharm 19(5):1422–1433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan KA, Wu FT, Cruz-Munoz W, Kerbel RS (2021) Ang2 inhibitors and Tie2 activators: potential therapeutics in perioperative treatment of early stage cancer. EMBO Mol Med 13(7):e08253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koren E, De Groot AS, Jawa V, Beck K, Boone T, Rivera D et al (2007) Clinical validation of the “in silico” prediction of immunogenicity of a human recombinant therapeutic protein. Clin Immunol 124(1):26–32

    Article  PubMed  CAS  Google Scholar 

  • Krzyscik MA, Sokolowska-Wedzina A, Jendryczko K, Pozniak M, Nawrocka D, Porebska N et al (2021) Preparation of site-specific cytotoxic protein conjugates via maleimide-thiol chemistry and sortase A-mediated ligation. J vis Exp 167:e61918

    Google Scholar 

  • Kuter DJ (2011) Romiplostim. In: Hematopoietic growth factors in oncology. Springer, New York, pp 267–288

  • Kuter DJ, Rummel M, Boccia R, Macik BG, Pabinger I, Selleslag D et al (2010) Romiplostim or standard of care in patients with immune thrombocytopenia. N Engl J Med 363(20):1889–1899

    Article  PubMed  CAS  Google Scholar 

  • Marei HE, Cenciarelli C, Hasan A (2022) Potential of antibody–drug conjugates (ADCs) for cancer therapy. Cancer Cell Int 22(1):1–12

    Article  Google Scholar 

  • Martin PL, Sachs C, Hoberman A, Jiao Q, Bugelski PJ (2010) Effects of CNTO 530, an erythropoietin mimetic-IgG4 fusion protein, on embryofetal development in rats and rabbits. Birth Defects Res B 89(2):87–96

    Article  CAS  Google Scholar 

  • Merrill JT, Shanahan WR, Scheinberg M, Kalunian KC, Wofsy D, Martin RS (2018) Phase III trial results with blisibimod, a selective inhibitor of B-cell activating factor, in subjects with systemic lupus erythematosus (SLE): results from a randomised, double-blind, placebo-controlled trial. Ann Rheum Dis 77(6):883–889

    Article  PubMed  CAS  Google Scholar 

  • Ning L, He B, Zhou P, Derda R, Huang J (2019) Molecular design of peptide-Fc fusion drugs. Curr Drug Metab 20(3):203–208

    Article  PubMed  CAS  Google Scholar 

  • Oliner J, Min H, Leal J, Yu D, Rao S, You E et al (2004) Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6(5):507–516

    Article  PubMed  CAS  Google Scholar 

  • Oliner JD, Bready J, Nguyen L, Estrada J, Hurh E, Ma H et al (2012) AMG 386, a selective angiopoietin 1/2-neutralizing peptibody, inhibits angiogenesis in models of ocular neovascular diseases. Investig Ophthalmol vis Sci 53(4):2170–2180

    Article  Google Scholar 

  • Rini BI, Atkins MB (2009) Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol 10(10):992–1000

    Article  PubMed  CAS  Google Scholar 

  • Robson EJ, Ghatage P (2011) AMG 386: profile of a novel angiopoietin antagonist in patients with ovarian cancer. Expert Opin Investig Drugs 20(2):297–304

    Article  PubMed  CAS  Google Scholar 

  • Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7(9):715–725

    Article  PubMed  CAS  Google Scholar 

  • Sathyanarayana P, Houde E, Marshall D, Volk A, Makropoulos D, Emerson C et al (2009) CNTO 530 functions as a potent EPO mimetic via unique sustained effects on bone marrow proerythroblast pools. Blood J Am Soc Hematol 113(20):4955–4962

    CAS  Google Scholar 

  • Seidel MF, Herguijuela M, Forkert R, Otten U (2010) Nerve growth factor in rheumatic diseases. Semin Arthritis Rheum 40(2):109–126

    Article  PubMed  CAS  Google Scholar 

  • Shim WS, Teh M, Mack PO, Ge R (2001) Inhibition of angiopoietin-1 expression in tumor cells by an antisense RNA approach inhibited xenograft tumor growth in immunodeficient mice. Int J Cancer 94(1):6–15

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto G, Gegg C, Boone T, Quéva C (2012) Peptibodies: a flexible alternative format to antibodies. Mabs 4(5):586–591

    Article  PubMed  PubMed Central  Google Scholar 

  • Sievers EL, Senter PD (2013) Antibody–drug conjugates in cancer therapy. Annu Rev Med 64:15–29

    Article  PubMed  CAS  Google Scholar 

  • Simister NE (2003) Placental transport of immunoglobulin G. Vaccine 21(24):3365–3369

    Article  PubMed  CAS  Google Scholar 

  • Sivaraman Siveen K, Prabhu K, Krishnankutty R, Kuttikrishnan S, Tsakou M, Alali QF et al (2017) Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: potential and challenges. Curr Vasc Pharmacol 15(4):339–351

    Google Scholar 

  • Smolej L, Andrýs C, Krejsek J, Belada D, Zak P, Siroký O et al (2007) Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are elevated in peripheral blood plasma of patients with chronic lymphocytic leukemia and decrease after intensive fludarabine-based treatment. Vnitrní Lékarství 53(11):1171–1176

    PubMed  CAS  Google Scholar 

  • Stohl W, Merrill JT, Looney RJ, Buyon J, Wallace DJ, Weisman MH et al (2015) Treatment of systemic lupus erythematosus patients with the BAFF antagonist “peptibody” blisibimod (AMG 623/A-623): results from randomized, double-blind phase 1a and phase 1b trials. Arthritis Res Ther 17(1):1–14

    Article  Google Scholar 

  • Sun F, Yu K, Yang Z, Wu S, Zhang Y, Shi L et al (2012) Impact of GLP-1 receptor agonists on major gastrointestinal disorders for type 2 diabetes mellitus: a mixed treatment comparison meta-analysis. Exp Diabetes Res 2012:230624

    Article  PubMed  PubMed Central  Google Scholar 

  • Tchao N, Gorski KS, Yuraszeck T, Sohn SJ, Ishida K, Wong H et al (2017) Amg 592 is an investigational IL-2 mutein that induces highly selective expansion of regulatory T cells. Blood 130:696

    Article  Google Scholar 

  • Tchao N, Gorski K, Yuraszeck T, Sohn S, Ishida K, Wong H et al (2018) PS7: 135 Amg 592 is an investigational il-2 mutein that induces highly selective expansion of regulatory t cells. Arch Dis Child

  • Tsui J (2018) Identification of a resistance mechanism to IGF-IR targeting in triple negative breast cancer cells. McGill University (Canada), Montreal

    Google Scholar 

  • Umpierrez G, Blevins T, Rosenstock J, Cheng C, Anderson J, Bastyr E III et al (2011) The effects of LY2189265, a long-acting glucagon-like peptide-1 analogue, in a randomized, placebo-controlled, double-blind study of overweight/obese patients with type 2 diabetes: the EGO study. Diabetes Obes Metab 13(5):418–425

    Article  PubMed  CAS  Google Scholar 

  • Yang AS (2015) Development of romiplostim: a novel engineered peptibody. Semin Hematol 52(1):12–15

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Lee F, Knize A, Jacobsen F, Yu S, Ishida K et al (2019) Development of an ICOSL and BAFF bispecific inhibitor AMG 570 for systemic lupus erythematosus treatment. Clin Exp Rheumatol 37(6):906–914

    PubMed  Google Scholar 

  • Zhang L, Deng Y, Zhang Y, Liu C, Zhang S, Zhu W et al (2020) The design, characterizations, and tumor angiogenesis inhibition of a multi-epitope peptibody with bFGF/VEGFA. Front Oncol 10:1190

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Q (2020) Bispecific antibodies for autoimmune and inflammatory diseases: clinical progress to date. BioDrugs 34(2):111–119

    Article  PubMed  Google Scholar 

  • Zhou L, Wang H, Jiang T, Garces S, Cheng LE, Lenz R et al (2020) P132 Design of an adaptive, phase 2, placebo-controlled, dose-ranging study to assess the efficacy and safety of AMG 570 in subjects with active SLE and inadequate response to standard of care therapy. Arch Dis Child

Download references

Acknowledgements

This study was approved and supported by the Research Council of Shiraz University of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Mohammadmahdi Nemati ,Ahmadreza Ahmadi and masoud hashemzaei; wrote the main manuscript text Ahmad Hashemzehi and Mohsen Abedi: prepared figures, and edited language Farukhruzi Nasrullozoda: edited final language

Corresponding author

Correspondence to Masoud Hashemzaei.

Ethics declarations

Conflict of interest

The author(s) declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, M., Ahmadi, A., Hashemzehi, A. et al. The Types and Applications of Peptibodies. Int J Pept Res Ther 30, 6 (2024). https://doi.org/10.1007/s10989-023-10582-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10989-023-10582-7

Keywords

Navigation