Skip to main content

Advertisement

Log in

Antibiotic-Peptide Conjugation Against Multi-drug Resistant Pathogens: A Comprehensive Review for Therapeutics and Drug Delivery Strategies

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

A global public health crisis has been created by the emergence of serious infectious illnesses, the rising prevalence of infections that are impenetrable to antibiotics (AMR), and an inadequate supply of novel antibiotics. The expansion of antimicrobial drugs with unique molecular scaffolds is a time-consuming and cost-effective approach at the recent trend. On the other hand, the long-term exploitation of conventional antibiotics sparked the emergence of “superbugs” that are multi-drug resistant and are responsible for more deaths than HIV. Antimicrobial peptides (AMPs) are short peptides of natural innate defensive role against invading pathogens. Due to their broad spectrum of activity and low tendency to bacterial resistance, it can be recognized as one of the most potential antimicrobials. AMPs are opposed to conventional antibiotics, and it has their own benefits. AMPs use a wide range of mechanisms to exert their effects, including cell membrane damage, DNA fragmentation, impair macromolecule synthesis, damage to cell organelles, enzyme inhibition, and potential antimicrobial activity through immune regulation mechanisms. The main drawback of employing AMPs is the natural occurrence and are less stable and more toxic. Hence, to maintain this short-lived peptide’s stability and multifunctional action, small-molecule antibiotic-peptide conjugates (APCs) are crucial. This review focuses on the types, mechanisms, pharmaceutical applications, and APCs approach to treat infections with multiple drug resistance and concludes the potential of AMPs in biomedical practice and in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abry MF, Kimenyi KM, Masiga D, Kulohoma BW (2017) Comparative genomics identifies male accessory gland proteins in five Glossina species. Wellcome Open Res 2:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Ageitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG (2017) Antimicrobial peptides (AMPs): ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 133:117–138

    Article  CAS  PubMed  Google Scholar 

  • Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 92:195–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed A, Siman-Tov G, Hall G, Bhalla N, Narayanan A (2019) Human antimicrobial peptides as therapeutics for viral infections. Viruses 11:704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aisenbrey C, Marquette A, Bechinger B (2019) The mechanisms of action of cationic antimicrobial peptides refined by novel concepts from biophysical investigations. Adv Exp Med Biol 1117:33–64

    Article  CAS  PubMed  Google Scholar 

  • Alencar-Silva T, Braga MC, Santana GOS, Saldanha-Araujo F, Pogue R, Dias SC, Franco OL, Carvalho JL (2018) Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnol Adv 36:2019–2031

    Article  CAS  PubMed  Google Scholar 

  • Almaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q (2017) Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Dev Ther 11:3159–3170

    Article  CAS  Google Scholar 

  • Almeida PF, Pokorny A (2012) 5.10 Interactions of antimicrobial peptides with lipid bilayers. In: Egelman EH (ed) Comprehensive biophysics. Elsevier, Amsterdam, pp 189–222

    Chapter  Google Scholar 

  • Andersson M, Boman A, Boman HG (2003) Ascaris nematodes from pig and human make three antibacterial peptides: isolation of cecropin P1 and two ASABF peptides. Cell Mol Life Sci (CMLS) 60:599–606

    Article  CAS  PubMed  Google Scholar 

  • Andreu V, Mendoza G, Arruebo M, Irusta S (2015) Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials (Basel, Switzerland) 8:5154–5193

    Article  PubMed  Google Scholar 

  • Antonoplis A, Zang X, Wegner T, Wender PA, Cegelski L (2019) Vancomycin-arginine conjugate inhibits growth of carbapenem-resistant E. coli and targets cell-wall synthesis. ACS Chem Biol 14:2065–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arakawa K, Yoshida S, Aikawa H, Hano C, Bolormaa T, Burenjargal S, Miyamoto T (2016) Production of a bacteriocin-like inhibitory substance by Leuconostoc mesenteroides subsp. dextranicum 213M0 isolated from Mongolian fermented mare milk, airag. Anim Sci J Nihon Chikusan Gakkaiho 87:449–456

    CAS  PubMed  Google Scholar 

  • Araújo C, Muñoz-Atienza E, Poeta P, Igrejas G, Hernández PE, Herranz C, Cintas LM (2016) Characterization of Pediococcus acidilactici strains isolated from rainbow trout (Oncorhynchus mykiss) feed and larvae: safety, DNA fingerprinting, and bacteriocinogenicity. Dis Aquat Org 119:129–143

    Article  Google Scholar 

  • Arnusch CJ, Pieters RJ, Breukink E (2012) Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides. PLoS ONE 7:e39768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashbaugh AG, Jiang X, Zheng J, Tsai AS, Kim W-S, Thompson JM, Miller RJ, Shahbazian JH, Wang Y, Dillen CA, Ordonez AA, Chang YS, Jain SK, Jones LC, Sterling RS, Mao H-Q, Miller LS (2016) Polymeric nanofiber coating with tunable combinatorial antibiotic delivery prevents biofilm-associated infection in vivo. Proc Natl Acad Sci USA 113:E6919–E6928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atrih A, Rekhif N, Moir AJG, Lebrihi A, Lefebvre G (2001) Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. Int J Food Microbiol 68:93–104

    Article  CAS  PubMed  Google Scholar 

  • Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603

    Article  CAS  PubMed  Google Scholar 

  • Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575

    Article  PubMed  PubMed Central  Google Scholar 

  • Baindara P, Mandal SM, Chawla N, Singh PK, Pinnaka AK, Korpole S (2013) Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express 3:2–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbosa Pelegrini P, Del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF (2011) Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int 2011:250349–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J, Davidson DJ, Donis RO (2011) Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE 6:e25333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batoni G, Maisetta G, Esin S (1858) Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochem Biophys Acta 2016:1044–1060

    Google Scholar 

  • Baxter AA, Lay FT, Poon IKH, Kvansakul M, Hulett MD (2017) Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci (CMLS) 74:3809–3825

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochem Biophys Acta 1462:157–183

    Article  CAS  PubMed  Google Scholar 

  • Bednarska NG, Wren BW, Willcocks SJ (2017) The importance of the glycosylation of antimicrobial peptides: natural and synthetic approaches. Drug Discov Today 22:919–926

    Article  CAS  PubMed  Google Scholar 

  • Belmadani A, Semlali A, Rouabhia M (2018) Dermaseptin-S1 decreases Candida albicans growth, biofilm formation and the expression of hyphal wall protein 1 and aspartic protease genes. J Appl Microbiol 125:72–83

    Article  CAS  PubMed  Google Scholar 

  • Ben Braïek O, Morandi S, Cremonesi P, Smaoui S, Hani K, Ghrairi T (2018) Biotechnological potential, probiotic and safety properties of newly isolated enterocin-producing Enterococcus lactis strains. LWT 92:361–370

    Article  Google Scholar 

  • Bera S, Zhanel GG, Schweizer F (2011) Synthesis and antibacterial activity of amphiphilic lysine-ligated neomycin B conjugates. Carbohydr Res 346:560–568

    Article  CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Segura A, Moreno M, López G, García-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat SG (2018) Modelling and computational sequence analysis of a bacteriocin isolated from Bacillus licheniformis strain BTHT8. Int J Comput Biol (IJCB) 7:29–34

    Article  Google Scholar 

  • Biswaro LS, da Costa Sousa MG, Rezende TMB, Dias SC, Franco OL (2018) Antimicrobial peptides and nanotechnology, recent advances and challenges. Front Microbiol 9:855

    Article  PubMed  PubMed Central  Google Scholar 

  • Brackman G, Coenye T (2015) Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des 21:5–11

    Article  CAS  PubMed  Google Scholar 

  • Braun K, Pochert A, Lindén M, Davoudi M, Schmidtchen A, Nordström R, Malmsten M (2016) Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides. J Colloid Interface Sci 475:161–170

    Article  CAS  PubMed  Google Scholar 

  • Braun MS, Sporer F, Zimmermann S, Wink M (2018) Birds, feather-degrading bacteria and preen glands: the antimicrobial activity of preen gland secretions from turkeys (Meleagris gallopavo) is amplified by keratinase. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiy117

    Article  PubMed  Google Scholar 

  • Brillet-Viel A, Pilet M-F, Courcoux P, Prévost H, Leroi F (2016) Optimization of growth and bacteriocin activity of the food bioprotective Carnobacterium divergens V41 in an animal origin protein free medium. Front Mar Sci 3(128):1–13

    Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agents 38:217–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso MH, Meneguetti BT, Costa BO, Buccini DF, Oshiro KGN, Preza SLE, Carvalho CME, Migliolo L, Franco OL (2019) Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. Int J Mol Sci 20:4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter CF, Chambers HF (2004) Daptomycin: another novel agent for treating infections due to drug-resistant gram-positive pathogens. Clin Infect Dis 38:994–1000

    Article  CAS  PubMed  Google Scholar 

  • Carratalá JV, Serna N, Villaverde A, Vázquez E, Ferrer-Miralles N (2020) Nanostructured antimicrobial peptides: the last push towards clinics. Biotechnol Adv 44:107603

    Article  PubMed  Google Scholar 

  • Castel G, Chtéoui M, Heyd B, Tordo N (2011) Phage display of combinatorial peptide libraries: application to antiviral research. Molecules (Basel, Switzerland) 16:3499–3518

    Article  CAS  PubMed  Google Scholar 

  • Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochem Biophys Acta 1758:1184–1202

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 51:1398–1406

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Li Y-F, Besenbacher F (2014) Electrospun nanofibers-mediated on-demand drug release. Adv Healthc Mater 3:1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Liu C, Chen D, Madrid K, Peng S, Dong X, Zhang M, Gu Y (2015a) Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy. Mol Pharm 12:2505–2516

    Article  CAS  PubMed  Google Scholar 

  • Chen W-Y, Chang H-Y, Lu J-K, Huang Y-C, Harroun SG, Tseng Y-T, Li Y-J, Huang C-C, Chang H-T (2015b) Self-assembly of antimicrobial peptides on gold nanodots: against multidrug-resistant bacteria and wound-healing application. Adv Func Mater 25:7189–7199

    Article  CAS  Google Scholar 

  • Chen YS, Wu HC, Kuo CY, Chen YW, Ho S, Yanagida F (2018) Leucocin C-607, a novel bacteriocin from the multiple-bacteriocin-producing Leuconostoc pseudomesenteroides 607 Isolated from Persimmon. Probiotics Antimicrob Proteins 10:148–156

    Article  CAS  PubMed  Google Scholar 

  • Chu-Kung AF, Nguyen R, Bozzelli KN, Tirrell M (2010) Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. J Colloid Interface Sci 345:160–167

    Article  CAS  PubMed  Google Scholar 

  • Cleophas RTC, Riool M, Quarles van Ufford HLC, Zaat SAJ, Kruijtzer JAW, Liskamp RMJ (2014) Convenient preparation of bactericidal hydrogels by covalent attachment of stabilized antimicrobial peptides using thiol-ene click chemistry. ACS Macro Lett 3:477–480

    Article  CAS  PubMed  Google Scholar 

  • Colgrave ML, Craik DJ (2004) Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 43:5965–5975

    Article  CAS  PubMed  Google Scholar 

  • Conibear AC, Bochen A, Rosengren KJ, Stupar P, Wang C, Kessler H, Craik DJ (2014) The cyclic cystine ladder of theta-defensins as a stable, bifunctional scaffold: a proof-of-concept study using the integrin-binding RGD motif. ChemBioChem 15:451–459

    Article  CAS  PubMed  Google Scholar 

  • Conlon JM, Mechkarska M, Abdel-Wahab YH, Flatt PR (2018) Peptides from frog skin with potential for development into agents for Type 2 diabetes therapy. Peptides 100:275–281

    Article  CAS  PubMed  Google Scholar 

  • Contardi M, Heredia-Guerrero JA, Perotto G, Valentini P, Pompa PP, Spanò R, Goldoni L, Bertorelli R, Athanassiou A, Bayer IS (2017) Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur J Pharm Sci 104:133–144

    Article  CAS  PubMed  Google Scholar 

  • Corrêa JAF, Evangelista AG, Nazareth TM, Luciano FB (2019) Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia 8:100494

    Article  Google Scholar 

  • Costa F, Teixeira C, Gomes P, Martins MCL (2019) Clinical application of AMPs. Adv Exp Med Biol 1117:281–298

    Article  CAS  PubMed  Google Scholar 

  • Cruz GF, de Araujo I, Torres MDT, de la Fuente-Nunez C, Oliveira VX, Ambrosio FN, Lombello CB, Almeida DV, Silva FD, Garcia W (2020) Photochemically-generated silver chloride nanoparticles stabilized by a peptide inhibitor of cell division and its antimicrobial properties. J Inorg Organomet Polym Mater 30:2464–2474

    Article  CAS  Google Scholar 

  • Cruz-Maya I, Guarino V, Almaguer-Flores A, Alvarez-Perez MA, Varesano A, Vineis C (2019) Highly polydisperse keratin rich nanofibers: scaffold design and in vitro characterization. J Biomed Mater Res Part A 107:1803–1813

    Article  CAS  Google Scholar 

  • da Costa JP, Cova M, Ferreira R, Vitorino R (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99:2023–2040

    Article  PubMed  Google Scholar 

  • David AA, Park SE, Parang K, Tiwari RK (2018) Antibiotics-peptide conjugates against multidrug-resistant bacterial pathogens. Curr Top Med Chem 18:1926–1936

    Article  CAS  PubMed  Google Scholar 

  • de la Fuente-Núñez C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, Lewenza S, Burrows L, Hancock RE (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56:2696–2704

    Article  PubMed  PubMed Central  Google Scholar 

  • De Lucca AJ, Walsh TJ (1999) Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob Agents Chemother 43:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng L, Taxipalati M, Zhang A, Que F, Wei H, Feng F, Zhang H (2018) Electrospun chitosan/poly(ethylene oxide)/lauric arginate nanofibrous film with enhanced antimicrobial activity. J Agric Food Chem 66:6219–6226

    Article  CAS  PubMed  Google Scholar 

  • Dhir A, Dhir S, Borowski LS, Jimenez L, Teitell M, Rötig A, Crow YJ, Rice GI, Duffy D, Tamby C, Nojima T, Munnich A, Schiff M, de Almeida CR, Rehwinkel J, Dziembowski A, Szczesny RJ, Proudfoot NJ (2018) Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560:238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhople V, Krukemeyer A, Ramamoorthy A (2006) The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochem Biophys Acta 1758:1499–1512

    Article  CAS  PubMed  Google Scholar 

  • Di Luca M, Maccari G, Nifosì R (2014) Treatment of microbial biofilms in the post-antibiotic era: prophylactic and therapeutic use of antimicrobial peptides and their design by bioinformatics tools. Pathog Dis 70:257–270

    Article  PubMed  Google Scholar 

  • Dias Rde O, Franco OL (2015) Cysteine-stabilized αβ defensins: from a common fold to antibacterial activity. Peptides 72:64–72

    Article  PubMed  Google Scholar 

  • Duwadi D, Shrestha A, Yilma B, Kozlovski I, Sa-Eed M, Dahal N, Jukosky J (2018) Identification and screening of potent antimicrobial peptides in arthropod genomes. Peptides 103:26–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziuba B, Nalepa B (2012) Identification of lactic acid bacteria and propionic acid bacteria using FTIR spectroscopy and artificial neural networks. Food Technol Biotechnol 50:399

    CAS  Google Scholar 

  • Ebrahimipour GH, Khosravibabadi Z, Sadeghi H, Aliahmadi A (2014) Isolation, partial purification and characterization of an antimicrobial compound, produced by Bacillus atrophaeus. Jundishapur J Microbiol 7:e11802

    Article  PubMed  Google Scholar 

  • Edwards IA, Elliott AG, Kavanagh AM, Zuegg J, Blaskovich MA, Cooper MA (2016) Contribution of amphipathicity and hydrophobicity to the antimicrobial activity and cytotoxicity of β-hairpin peptides. ACS Infect Dis 2:442–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias PM, Choi EH (2005) Interactions among stratum corneum defensive functions. Exp Dermatol 14:719–726

    Article  PubMed  Google Scholar 

  • Erdem Büyükkiraz M, Kesmen Z (2022) Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds. J Appl Microbiol 132:1573–1596

    Article  PubMed  Google Scholar 

  • Essig A, Hofmann D, Münch D, Gayathri S, Künzler M, Kallio PT, Sahl HG, Wider G, Schneider T, Aebi M (2014) Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem 289:34953–34964

    Article  PubMed  PubMed Central  Google Scholar 

  • Etayash H, Alford M, Akhoundsadegh N, Drayton M, Straus SK, Hancock REW (2021) Multifunctional antibiotic-host defense peptide conjugate kills bacteria, eradicates biofilms, and modulates the innate immune response. J Med Chem 64:16854–16863

    Article  CAS  PubMed  Google Scholar 

  • Falanga A, Lombardi L, Franci G, Vitiello M, Iovene MR, Morelli G, Galdiero M, Galdiero S (2016) Marine antimicrobial peptides: nature provides templates for the design of novel compounds against pathogenic bacteria. Int J Mol Sci 17:785

    Article  PubMed  PubMed Central  Google Scholar 

  • Falanga A, Nigro E, De Biasi MG, Daniele A, Morelli G, Galdiero S, Scudiero O (2017) Cyclic peptides as novel therapeutic microbicides: engineering of human defensin mimetics. Molecules (basel, Switzerland) 22:1217

    Article  PubMed  Google Scholar 

  • Farouk A, Ahamed NT, Alzahrani OM, Alghamdi AS, Bahobail AA (2017) Inducible antimicrobial compounds (halal) production in honey bee larvae (Apis mellifera) from Rumaida Taif by injecting of various dead microorganisms extracts. J Appl Biol Biotechnol 5:23–29

    CAS  Google Scholar 

  • Florin T, Maracci C, Graf M, Karki P, Klepacki D, Berninghausen O, Beckmann R, Vázquez-Laslop N, Wilson DN, Rodnina MV, Mankin AS (2017) An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nat Struct Mol Biol 24:752–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fruitwala S, El-Naccache DW, Chang TL (2019) Multifaceted immune functions of human defensins and underlying mechanisms. Semin Cell Dev Biol 88:163–172

    Article  CAS  PubMed  Google Scholar 

  • Gajalakshmi P (2017) Selective isolation and characterization of rare actinomycetes adopted in glacier soil of Manali ice point and its activity against Mycobacterium spp. J Microbiol Biotechnol Res 7:1–10

    Article  Google Scholar 

  • Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR (2021) The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 50:7820–7880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gutierrez E, Mayer MJ, Cotter PD, Narbad A (2019) Gut microbiota as a source of novel antimicrobials. Gut Microbes 10:1–21

    Article  CAS  PubMed  Google Scholar 

  • Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides. A Review. Front Microbiol 4:294

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghaffar KA, Hussein WM, Khalil ZG, Capon RJ, Skwarczynski M, Toth I (2015) Levofloxacin and indolicidin for combination antimicrobial therapy. Curr Drug Deliv 12:108–114

    Article  PubMed  Google Scholar 

  • Ghag SB, Shekhawat UK, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants. PLoS ONE 7:e39557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharsallaoui A, Oulahal N, Joly C, Degraeve P (2016) Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses. Crit Rev Food Sci Nutr 56:1262–1274

    Article  CAS  PubMed  Google Scholar 

  • Giram PS, Shitole A, Nande SS, Sharma N, Garnaik B (2018) Fast dissolving moxifloxacin hydrochloride antibiotic drug from electrospun Eudragit L-100 nonwoven nanofibrous mats. Mater Sci Eng, C 92:526–539

    Article  CAS  Google Scholar 

  • Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30:505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gourbal B, Pinaud S, Beckers GJM, Van Der Meer JWM, Conrath U, Netea MG (2018) Innate immune memory: an evolutionary perspective. Immunol Rev 283:21–40

    Article  CAS  PubMed  Google Scholar 

  • Groves ML, Peterson RF, Kiddy CA (1965) Poliomorphism in the red protein isolated from milk of individual cows. Nature 207:1007–1008

    Article  CAS  PubMed  Google Scholar 

  • Guzmán-Rodríguez JJ, Ochoa-Zarzosa A, López-Gómez R, López-Meza JE (2015) Plant antimicrobial peptides as potential anticancer agents. Biomed Res Int 2015:735087

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    Article  CAS  PubMed  Google Scholar 

  • Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959

    Article  CAS  PubMed  Google Scholar 

  • Hamdan N, Yamin A, Hamid SA, Khodir W, Guarino V (2021) Functionalized antimicrobial nanofibers: design criteria and recent advances. J Funct Biomater 12:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammi I, Delalande F, Belkhou R, Marchioni E, Cianferani S, Ennahar S (2016) Maltaricin CPN, a new class IIa bacteriocin produced by Carnobacterium maltaromaticum CPN isolated from mould-ripened cheese. J Appl Microbiol 121:1268–1274

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Patrzykat A (2002) Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Targets Infect Disord 2:79–83

    Article  CAS  PubMed  Google Scholar 

  • Hancock RE, Haney EF, Gill EE (2016) The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol 16:321–334

    Article  CAS  PubMed  Google Scholar 

  • Haney EF, Mansour SC, Hilchie AL, de la Fuente-Núñez C, Hancock RE (2015) High throughput screening methods for assessing antibiofilm and immunomodulatory activities of synthetic peptides. Peptides 71:276–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haney EF, Straus SK, Hancock REW (2019) Reassessing the host defense peptide landscape. Front Chem 7:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haney EF, Pletzer D, Hancock RE (2021) Impact of host defense peptides on chronic wounds and infections. In: Chronic wounds, wound dressings and wound healing. Springer, Cham, pp 3–19

  • Hashizume H, Sawa R, Yamashita K, Nishimura Y, Igarashi M (2017) Structure and antibacterial activities of new cyclic peptide antibiotics, pargamicins B, C and D, from Amycolatopsis sp. ML1-hF4. J Antibiot 70:699–704

    Article  CAS  Google Scholar 

  • Hata T, Tanaka R, Ohmomo S (2010) Isolation and characterization of plantaricin ASM1: a new bacteriocin produced by Lactobacillus plantarum A-1. Int J Food Microbiol 137:94–99

    Article  CAS  PubMed  Google Scholar 

  • Heinrich J, König NF, Sobottka S, Sarkar B, Kulak N (2019) Flexible vs. rigid bis(2-benzimidazolyl) ligands in Cu(II) complexes: impact on redox chemistry and oxidative DNA cleavage activity. J Inorg Biochem 194:223–232

    Article  CAS  PubMed  Google Scholar 

  • Helmerhorst EJ, Venuleo C, Beri A, Oppenheim FG (2005) Candida glabrata is unusual with respect to its resistance to cationic antifungal proteins. Yeast (chichester, England) 22:705–714

    Article  CAS  PubMed  Google Scholar 

  • Herrell WE, Heilman D (1941) Experimental and clinical studies on gramicidin. J Clin Investig 20:583–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill CP, Yee J, Selsted ME, Eisenberg D (1991) Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science (New York, N.Y.) 251:1481–1485

    Article  CAS  PubMed  Google Scholar 

  • Hirsch JG (1956) Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J Exp Med 103:589–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollmann A, Martinez M, Maturana P, Semorile LC, Maffia PC (2018) Antimicrobial peptides: interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem 6:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Holo H, Faye T, Brede DA, Nilsen T, Ødegård I, Langsrud T, Brendehaug J, Nes IF (2002) Bacteriocins of propionic acid bacteria. Lait 82:59–68

    Article  CAS  Google Scholar 

  • Höng K, Austerlitz T, Bohlmann T, Bohlmann H (2021) The thionin family of antimicrobial peptides. PLoS ONE 16:e0254549

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu CH, Chen C, Jou ML, Lee AY, Lin YC, Yu YP, Huang WT, Wu SH (2005) Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 33:4053–4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, Chen X, Huang Y, Chen Y (2018) Co-administration of iRGD with peptide HPRP-A1 to improve anticancer activity and membrane penetrability. Sci Rep 8:2274

    Article  PubMed  PubMed Central  Google Scholar 

  • Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:582779

    Article  PubMed  PubMed Central  Google Scholar 

  • Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145

    Article  CAS  PubMed  Google Scholar 

  • Hwang B, Hwang JS, Lee J, Lee DG (2010a) Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris. Biochem Biophys Res Commun 400:352–357

    Article  CAS  PubMed  Google Scholar 

  • Hwang JS, Lee J, Hwang B, Nam SH, Yun EY, Kim SR, Lee DG (2010b) Isolation and characterization of Psacotheasin, a novel Knottin-type antimicrobial peptide, from Psacothea hilaris. J Microbiol Biotechnol 20:708–711

    Article  CAS  PubMed  Google Scholar 

  • Jäkel CE, Meschenmoser K, Kim Y, Weiher H, Schmidt-Wolf IG (2012) Efficacy of a proapoptotic peptide towards cancer cells. In Vivo (Athens, Greece) 26:419–426

    PubMed  Google Scholar 

  • Jia F, Wang J, Peng J, Zhao P, Kong Z, Wang K, Yan W, Wang R (2017) D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim Biophys Sin 49:916–925

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Tang X, Zhou Q, Zou J, Li P, Breukink E, Gu Q (2018) Plantaricin NC8 from Lactobacillus plantarum causes cell membrane disruption to Micrococcus luteus without targeting lipid II. Appl Microbiol Biotechnol 102:7465–7473

    Article  CAS  PubMed  Google Scholar 

  • Jin G, Weinberg A (2019) Human antimicrobial peptides and cancer. Semin Cell Dev Biol 88:156–162

    Article  CAS  PubMed  Google Scholar 

  • Kalmokoff ML, Banerjee SK, Cyr T, Hefford MA, Gleeson T (2001) Identification of a new plasmid-encoded sec-dependent bacteriocin produced by Listeria innocua 743. Appl Environ Microbiol 67:4041–4047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanchanapally R, Viraka Nellore BP, Sinha SS, Pedraza F, Jones SJ, Pramanik A, Chavva SR, Tchounwou C, Shi Y, Vangara A, Sardar D, Ray PC (2015) Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Adv 5:18881–18887

    Article  CAS  PubMed  Google Scholar 

  • Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ (2014) Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther 12:1477–1486

    Article  CAS  PubMed  Google Scholar 

  • Kang HK, Kim C, Seo CH, Park Y (2017) The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol (Seoul, Korea) 55:1–12

    CAS  Google Scholar 

  • Kang HK, Seo CH, Luchian T, Park Y (2018) Pse-T2, an antimicrobial peptide with high-level, broad-spectrum antimicrobial potency and skin biocompatibility against multidrug-resistant Pseudomonas aeruginosa infection. Antimicrob Agents Chemother 62:e01493-e1518

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang X, Dong F, Shi C, Liu S, Sun J, Chen J, Li H, Xu H, Lao X, Zheng H (2019) DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data 6:148–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang HK, Lee HH, Seo CH, Park Y (2019b) Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. Mar Drugs 17:350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaunietis A, Buivydas A, Čitavičius DJ, Kuipers OP (2019) Heterologous biosynthesis and characterization of a glycocin from a thermophilic bacterium. Nat Commun 10:1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenawy E-R, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384

    Article  CAS  PubMed  Google Scholar 

  • Khurshid Z, Najeeb S, Mali M, Moin SF, Raza SQ, Zohaib S, Sefat F, Zafar MS (2017) Histatin peptides: pharmacological functions and their applications in dentistry. Saudi Pharm J (SPJ) 25:25–31

    Article  PubMed  Google Scholar 

  • Kitagawa N, Otani T, Inai T (2019) Nisin, a food preservative produced by Lactococcus lactis, affects the localization pattern of intermediate filament protein in HaCaT cells. Anat Sci Int 94:163–171

    Article  CAS  PubMed  Google Scholar 

  • Ko SJ, Park E, Asandei A, Choi JY, Lee SC, Seo CH, Luchian T, Park Y (2020) Bee venom-derived antimicrobial peptide melectin has broad-spectrum potency, cell selectivity, and salt-resistant properties. Sci Rep 10:10145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J, Krzyżewski J, Zwierzchowski L, Bagnicka E (2012) Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 39:10957–10970

    Article  PubMed  PubMed Central  Google Scholar 

  • Kückelhaus SA, Leite JR, Muniz-Junqueira MI, Sampaio RN, Bloch C Jr, Tosta CE (2009) Antiplasmodial and antileishmanial activities of phylloseptin-1, an antimicrobial peptide from the skin secretion of Phyllomedusa azurea (Amphibia). Exp Parasitol 123:11–16

    Article  PubMed  Google Scholar 

  • Kurpe SR, Grishin SY, Surin AK, Panfilov AV, Slizen MV, Chowdhury SD, Galzitskaya OV (2020) Antimicrobial and amyloidogenic activity of peptides. Can antimicrobial peptides be used against SARS-CoV-2? Int J Mol Sci 21:9552–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladokhin AS, White SH (2001) ‘Detergent-like’ permeabilization of anionic lipid vesicles by melittin. Biochem Biophys Acta 1514:253–260

    Article  CAS  PubMed  Google Scholar 

  • Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, Chamilos G, Feldmeyer L, Marinari B, Chon S, Vence L, Riccieri V, Guillaume P, Navarini AA, Romero P, Costanzo A, Piccolella E, Gilliet M, Frasca L (2014) The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun 5:5621

    Article  CAS  PubMed  Google Scholar 

  • Lau QY, Li J, Sani MA, Sinha S, Li Y, Ng FM, Kang C, Bhattacharjya S, Separovic F, Verma C, Chia CSB (1860) Elucidating the bactericidal mechanism of action of the linear antimicrobial tetrapeptide BRBR-NH(2). Biochim Biophys Acta 2018:1517–1527

    Google Scholar 

  • Lay FT, Anderson MA (2005) Defensins—components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101

    Article  CAS  PubMed  Google Scholar 

  • Lay FT, Brugliera F, Anderson MA (2003) Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol 131:1283–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le TN, Do TH, Nguyen TN, Tran NT, Enfors SO, Truong H (2014) Expression and simple purification strategy for the generation of anti-microbial active enterocin P from Enterococcus faecium expressed in Escherichia coli ER2566. Iran J Biotechnol 12:17–25

    Article  Google Scholar 

  • Le CF, Gudimella R, Razali R, Manikam R, Sekaran SD (2016) Transcriptome analysis of Streptococcus pneumoniae treated with the designed antimicrobial peptides, DM3. Sci Rep 6:26828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le CF, Fang CM, Sekaran SD (2017) Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother 61:e02340-e2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Lee DG (2015) Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and apoptosis. J Microbiol Biotechnol 25:759–764

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Moon HJ, Kawabata S, Kurata S, Natori S, Lee BL (1995) A sapecin homologue of Holotrichia diomphalia: purification, sequencing and determination of disulfide pairs. Biol Pharm Bull 18:457–459

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Hall KN, Aguilar MI (2016) Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Curr Top Med Chem 16:25–39

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Seo M, Lee HJ, Baek M, Kim IW, Kim SY, Kim MA, Kim SH, Hwang JS (2019) Anti-inflammatory activity of antimicrobial peptide allomyrinasin derived from the dynastid beetle, Allomyrina dichotoma. J Microbiol Biotechnol 29:687–695

    Article  CAS  PubMed  Google Scholar 

  • Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q (2019) The antimicrobial peptides and their potential clinical applications. Am J Transl Res 11:3919–3931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Anuwongcharoen N, Malik AA, Prachayasittikul V, Wikberg JE, Nantasenamat C (2016) Roles of d-amino acids on the bioactivity of host defense peptides. Int J Mol Sci 17:1023

    Article  PubMed  PubMed Central  Google Scholar 

  • Li B, Lyu P, Xie S, Qin H, Pu W, Xu H, Chen T, Shaw C, Ge L, Kwok HF (2019a) LFB: a novel antimicrobial brevinin-like peptide from the skin secretion of the Fujian large headed frog, Limnonectes fujianensi. Biomolecules 9:242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Liu T, Liu Y, Tan Z, Ju Y, Yang Y, Dong W (2019b) Antimicrobial activity, membrane interaction and stability of the d-amino acid substituted analogs of antimicrobial peptide W3R6. J Photochem Photobiol, B 200:111645

    Article  CAS  PubMed  Google Scholar 

  • Liang W, Diana J (2020) The dual role of antimicrobial peptides in autoimmunity. Front Immunol 11:2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Zhang X, Lian K, Tian X, Zhang M, Wang S, Chen C, Nie C, Pan Y, Han F, Wei Z, Zhang W (2020) Antiviral effects of Bovine antimicrobial peptide against TGEV in vivo and in vitro. J Vet Sci 21:e80

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim C, Takahashi E, Hongsuwan M, Wuthiekanun V, Thamlikitkul V, Hinjoy S, Day NP, Peacock SJ, Limmathurotsakul D (2016) epidemiology and burden of multidrug-resistant bacterial infection in a developing country. eLife 5:e18082-85

    Article  PubMed  PubMed Central  Google Scholar 

  • Lohner K, Prossnigg F (2009) Biological activity and structural aspects of PGLa interaction with membrane mimetic systems. Biochem Biophys Acta 1788:1656–1666

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Xu H, Xia J, Ma J, Xu J, Li Y, Feng J (2020) D- and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Front Microbiol 11:563030

    Article  PubMed  PubMed Central  Google Scholar 

  • Luong HX, Thanh TT, Tran TH (2020) Antimicrobial peptides—advances in development of therapeutic applications. Life Sci 260:118407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutkenhaus J (1990) Regulation of cell division in E. coli. Trends Genet (TIG) 6:22–25

    Article  CAS  PubMed  Google Scholar 

  • Luz C, Calpe J, Saladino F, Luciano FB, Fernandez-Franzón M, Mañes J, Meca G (2018) Antimicrobial packaging based on ε-polylysine bioactive film for the control of mycotoxigenic fungi in vitro and in bread. J Food Process Preserv 42:e13370

    Article  CAS  PubMed  Google Scholar 

  • Mack MR, Kim BS (2016) Superficial Immunity: Antimicrobial responses are more than skin deep. Immunity 45:6–8

    Article  CAS  PubMed  Google Scholar 

  • Maftoonazad N, Shahamirian M, John D, Ramaswamy H (2019) Development and evaluation of antibacterial electrospun pea protein isolate-polyvinyl alcohol nanocomposite mats incorporated with cinnamaldehyde. Mater Sci Eng C Mater Biol Appl 94:393–402

    Article  CAS  PubMed  Google Scholar 

  • Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Maldonado-Barragán A, Caballero-Guerrero B, Martín V, Ruiz-Barba JL, Rodríguez JM (2016) Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina of a healthy woman. BMC Microbiol 16:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Malmsten M (2013) Inorganic nanomaterials as delivery systems for proteins, peptides, DNA, and siRNA. Curr Opin Colloid Interface Sci 18:468–480

    Article  CAS  Google Scholar 

  • Manabe T, Kawasaki K (2017) D-form KLKLLLLLKLK-NH(2) peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Sci Rep 7:43384

    Article  PubMed  PubMed Central  Google Scholar 

  • Mardirossian M, Pérébaskine N, Benincasa M, Gambato S, Hofmann S, Huter P, Müller C, Hilpert K, Innis CA, Tossi A, Wilson DN (2018) The Dolphin proline-rich antimicrobial peptide Tur1A inhibits protein synthesis by targeting the bacterial ribosome. Cell Chem Biol 25:530-539.e537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzaki K (1999) Why and how are peptide–lipid interactions utilized for self-defense? Magainins and Tachyplesins as Archetypes. Biochim Biophys Acta 1462:1–10

    Article  CAS  PubMed  Google Scholar 

  • Mattick AT, Hirsch A (1947) Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet (London, Engl) 2:5–8

    Article  CAS  Google Scholar 

  • Mills S, Griffin C, O’Connor PM, Serrano LM, Meijer WC, Hill C, Ross RP (2017) A multibacteriocin cheese starter system, comprising nisin and lacticin 3147 in Lactococcus lactis, in combination with plantaricin from Lactobacillus plantarum. Appl Environ Microbiol 83:e00799-e817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaeei S, Taghe S, Asare-Addo K, Nokhodchi A (2021) Polyvinyl alcohol/chitosan single-layered and polyvinyl alcohol/chitosan/Eudragit RL100 multi-layered electrospun nanofibers as an ocular matrix for the controlled release of ofloxacin: an in vitro and in vivo evaluation. AAPS PharmSciTech 22:170

    Article  CAS  PubMed  Google Scholar 

  • Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules (Basel, Switzerland) 22:1255

    Article  PubMed  Google Scholar 

  • Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ (2020) Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 19:311–332

    Article  CAS  PubMed  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AG, Worm B (2011) How many species are there on Earth and in the ocean? PLoS Biol 9:e1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A, MoosazadehMoghaddam M, Mirnejad R (2018) Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microb Drug Resist (Larchmont, NY) 24:747–767

    Article  CAS  Google Scholar 

  • Mouro C, Gomes AP, Ahonen M, Fangueiro R, Gouveia IC (2021) Chelidonium majus L. Incorporated emulsion electrospun PCL/PVA_PEC nanofibrous meshes for antibacterial wound dressing applications. Nanomaterials (Basel, Switzerland) 11:1785

    Article  CAS  PubMed  Google Scholar 

  • Mousavi Maleki MS, Sardari S, Ghandehari Alavijeh A, Madanchi H (2022) Recent patents and FDA-approved drugs based on antiviral peptides and other peptide-related antivirals. Int J Pept Res Ther 29:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyer TB, Heil LR, Kirkpatrick CL, Goldfarb D, Lefever WA, Parsley NC, Wommack AJ, Hicks LM (2019) PepSAVI-MS reveals a proline-rich antimicrobial peptide in Amaranthus tricolor. J Nat Prod 82:2744–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad SA, Ali A, Naz A, Hassan A, Riaz N, Saeed-ul-Hassan S, Andleeb S, Barh D (2016) A new broad-spectrum peptide antibiotic produced by Bacillus brevis strain MH9 isolated from Margalla Hills of Islamabad, Pakistan. Int J Pept Res Ther 22:271–279

    Article  CAS  Google Scholar 

  • Mukhopadhyay J, Sineva E, Knight J, Levy RM, Ebright RH (2004) Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol Cell 14:739–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naimah AK, Al-Manhel AJA, Al-Shawi MJ (2017) Isolation, purification and characterization of antimicrobial peptides produced from Saccharomyces boulardii. Int J Pept Res Ther 24:455–461

    Article  Google Scholar 

  • Nayab S, Aslam MA, Rahman S, Sindhu ZUD, Sajid S, Zafar N, Razaq M, Kanwar R, Amanullah (2022) A review of antimicrobial peptides: its function, mode of action and therapeutic potential. Int J Pept Res Ther 28:46

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HLT, Trujillo-Paez JV, Umehara Y, Yue H, Peng G, Kiatsurayanon C, Chieosilapatham P, Song P, Okumura K, Ogawa H, Ikeda S, Niyonsaba F (2020) Role of antimicrobial peptides in skin barrier repair in individuals with atopic dermatitis. Int J Mol Sci 21:7607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omardien S, Drijfhout JW, Vaz FM, Wenzel M, Hamoen LW, Zaat SAJ, Brul S (1860) Bactericidal activity of amphipathic cationic antimicrobial peptides involves altering the membrane fluidity when interacting with the phospholipid bilayer. Biochim Biophys Acta 2018:2404–2415

    Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262

    Article  CAS  PubMed  Google Scholar 

  • Oshiro KGN, Rodrigues G, Monges BED, Cardoso MH, Franco OL (2019) Bioactive peptides against fungal biofilms. Front Microbiol 10:2169

    Article  PubMed  PubMed Central  Google Scholar 

  • Outlaw VK, Bovier FT, Mears MC, Cajimat MN, Zhu Y, Lin MJ, Addetia A, Lieberman NAP, Peddu V, Xie X, Shi PY, Greninger AL, Gellman SH, Bente DA, Moscona A, Porotto M (2020) Inhibition of coronavirus entry in vitro and ex vivo by a lipid-conjugated peptide derived from the SARS-CoV-2 spike glycoprotein HRC domain. Biology 11:e01935-20

    Google Scholar 

  • Pan F, Amarjargal A, Altenried S, Liu M, Zuber F, Zeng Z, Rossi RM, Maniura-Weber K, Ren Q (2021) Bioresponsive hybrid nanofibers enable controlled drug delivery through glass transition switching at physiological temperature. ACS Appl Biol Mater 4:4271–4279

    Article  CAS  Google Scholar 

  • Pankajakshan D, Albuquerque MTP, Evans JD, Kamocka MM, Gregory RL, Bottino MC (2016) Triple antibiotic polymer nanofibers for intracanal drug delivery: effects on dual species biofilm and cell function. J Endodontics 42:1490–1495

    Article  Google Scholar 

  • Panteleev PV, Bolosov IA, Balandin SV, Ovchinnikova TV (2015) Structure and biological functions of β-hairpin antimicrobial peptides. Acta Nat 7:37–47

    Article  CAS  Google Scholar 

  • Panteleev PV, Balandin SV, Ivanov VT, Ovchinnikova TV (2017) A therapeutic potential of animal β-hairpin antimicrobial peptides. Curr Med Chem 24:1724–1746

    Article  CAS  PubMed  Google Scholar 

  • Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Kharaziha M, Ismail AF, Sharif S, Razzaghi M, RamaKrishna S, Berto F (2022) Antimicrobial synthetic and natural polymeric nanofibers as wound dressing: a review. Adv Eng Mater 24:2101460

    Article  CAS  Google Scholar 

  • Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Article  CAS  PubMed  Google Scholar 

  • Paulsen VS, Blencke HM, Benincasa M, Haug T, Eksteen JJ, Styrvold OB, Scocchi M, Stensvåg K (2013) Structure–activity relationships of the antimicrobial peptide arasin 1 - and mode of action studies of the N-terminal, proline-rich region. PLoS ONE 8:e53326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlukhina S, Lu Y, Patimetha A, Libera M, Sukhishvili S (2010) Polymer multilayers with pH-triggered release of antibacterial agents. Biomacromolecules 11:3448–3456

    Article  CAS  PubMed  Google Scholar 

  • Perez RH, Ishibashi N, Inoue T, Himeno K, Masuda Y, Sawa N, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K (2016) Functional analysis of genes involved in the biosynthesis of enterocin NKR-5-3B, a novel circular bacteriocin. J Bacteriol 198:291–300

    Article  CAS  PubMed  Google Scholar 

  • Pfalzgraff A, Brandenburg K, Weindl G (2018) Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol 9:281

    Article  PubMed  PubMed Central  Google Scholar 

  • Pino-Angeles A, Leveritt JM 3rd, Lazaridis T (2016) Pore structure and synergy in antimicrobial peptides of the Magainin family. PLoS Comput Biol 12:e1004570

    Article  PubMed  PubMed Central  Google Scholar 

  • Pletzer D, Coleman SR, Hancock RE (2016) Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr Opin Microbiol 33:35–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM (2021) Antimicrobial peptides and copper(II) ions: novel therapeutic opportunities. Chem Rev 121:2648–2712

    Article  CAS  PubMed  Google Scholar 

  • Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31:12416–12423

    Article  CAS  PubMed  Google Scholar 

  • Prasad SV, Fiedoruk K, Daniluk T, Piktel E, Bucki R (2019) Expression and function of host defense peptides at inflammation sites. Int J Mol Sci 21:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Price DP, Schilkey FD, Ulanov A, Hansen IA (2015) Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti. Parasit Vectors 8:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Pukala TL, Doyle JR, Llewellyn LE, Kuhn-Nentwig L, Apponyi MA, Separovic F, Bowie JH (2007) Cupiennin 1a, an antimicrobial peptide from the venom of the neotropical wandering spider Cupiennius salei, also inhibits the formation of nitric oxide by neuronal nitric oxide synthase. FEBS J 274:1778–1784

    Article  CAS  PubMed  Google Scholar 

  • Pushpanathan P, Mathew GS, Selvarajan S, Seshadri KG, Srikanth P (2019) Gut microbiota and its mysteries. Indian J Med Microbiol 37:268–277

    Article  PubMed  Google Scholar 

  • Radaic A, de Jesus MB, Kapila YL (2020) Bacterial anti-microbial peptides and nano-sized drug delivery systems: the state of the art toward improved bacteriocins. J Control Release 321:100–118

    Article  CAS  PubMed  Google Scholar 

  • Ragland SA, Criss AK (2017) From bacterial killing to immune modulation: recent insights into the functions of lysozyme. PLoS Pathog 13:e1006512

    Article  PubMed  PubMed Central  Google Scholar 

  • Rai A, Ferrão R, Palma P, Patricio T, Parreira P, Anes E, Tonda-Turo C, Martins MCL, Alves N, Ferreira L (2022) Antimicrobial peptide-based materials: opportunities and challenges. J Mater Chem B 10:2384–2429

    Article  CAS  PubMed  Google Scholar 

  • Rajchakit U, Sarojini V (2017) Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjug Chem 28:2673–2686

    Article  CAS  PubMed  Google Scholar 

  • Ramos R, Silva JP, Rodrigues AC, Costa R, Guardão L, Schmitt F, Soares R, Vilanova M, Domingues L, Gama M (2011) Wound healing activity of the human antimicrobial peptide LL37. Peptides 32:1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Rao M, Wei W, Ge M, Chen D, Sheng X (2013) A new antibacterial lipopeptide found by UPLC-MS from an actinomycete Streptomyces sp. HCCB10043. Nat Prod Res 27:2190–2195

    Article  CAS  PubMed  Google Scholar 

  • Rathinakumar R, Walkenhorst WF, Wimley WC (2009) Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity. J Am Chem Soc 131:7609–7617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathinam VAK, Chan FK (2018) Inflammasome, inflammation, and tissue homeostasis. Trends Mol Med 24:304–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reffuveille F, de la Fuente-Núñez C, Mansour S, Hancock RE (2014) A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother 58:5363–5371

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinhardt A, Neundorf I (2016) Design and application of antimicrobial peptide conjugates. Int J Mol Sci 17:701

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Rojas A, Baeder DY, Johnston P, Regoes RR, Rolff J (2021) Bacteria primed by antimicrobial peptides develop tolerance and persist. PLoS Pathog 17:e1009443

    Article  PubMed  PubMed Central  Google Scholar 

  • Rofeal M, Abdelmalek F, Steinbüchel A (2022) Naturally-sourced antibacterial polymeric nanomaterials with special reference to modified polymer variants. Int J Mol Sci 23:4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roscetto E, Contursi P, Vollaro A, Fusco S, Notomista E, Catania MR (2018) Antifungal and anti-biofilm activity of the first cryptic antimicrobial peptide from an archaeal protein against Candida spp. clinical isolates. Sci Rep 8:17570

    Article  PubMed  PubMed Central  Google Scholar 

  • Sader HS, Fedler KA, Rennie RP, Stevens S, Jones RN (2004) Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob Agents Chemother 48:3112–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandreschi S, Piras AM, Batoni G, Chiellini F (2016) Perspectives on polymeric nanostructures for the therapeutic application of antimicrobial peptides. Nanomedicine (Lond) 11:1729–1744

    Article  CAS  PubMed  Google Scholar 

  • Santiago-Morales J, Amariei G, Letón P, Rosal R (2016) Antimicrobial activity of poly(vinyl alcohol)-poly(acrylic acid) electrospun nanofibers. Colloids Surf B 146:144–151

    Article  CAS  Google Scholar 

  • Savelyeva A, Ghavami S, Davoodpour P, Asoodeh A, Los MJ (2014) An overview of Brevinin superfamily: structure, function and clinical perspectives. Adv Exp Med Biol 818:197–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaal JB, Maretzky T, Tran DQ, Tran PA, Tongaonkar P, Blobel CP, Ouellette AJ, Selsted ME (2018) Macrocyclic θ-defensins suppress tumor necrosis factor-α (TNF-α) shedding by inhibition of TNF-α-converting enzyme. J Biol Chem 293:2725–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafer ME, Browne H, Goldberg JB, Greenberg DE (2021) Peptides and antibiotic therapy: advances in design and delivery. Acc Chem Res 54:2377–2385

    Article  CAS  PubMed  Google Scholar 

  • Scott MG, Yan H, Hancock RE (1999) Biological properties of structurally related alpha-helical cationic antimicrobial peptides. Infect Immun 67:2005–2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebe I, Ostorhazi E, Fekete A, Kovacs KN, Zelko R, Kovalszky I, Li W, Wade JD, Szabo D, Otvos L Jr (2016) Polyvinyl alcohol nanofiber formulation of the designer antimicrobial peptide APO sterilizes Acinetobacter baumannii-infected skin wounds in mice. Amino Acids 48:203–211

    Article  CAS  PubMed  Google Scholar 

  • Segura A, Moreno M, Madueño F, Molina A, García-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens, Molecular plant-microbe interactions. MPMI 12:16–23

    Article  CAS  PubMed  Google Scholar 

  • Shahmiri M, Enciso M, Adda CG, Smith BJ, Perugini MA, Mechler A (2016) Membrane core-specific antimicrobial action of cathelicidin LL-37 peptide switches between pore and nanofibre formation. Sci Rep 6:38184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochem Biophys Acta 1462:55–70

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Sethi S, Prasad R, Samanta P, Rajwanshi A, Malhotra S, Sharma M (2011) Characterization of low molecular weight antimicrobial peptide from human female reproductive tract. Indian J Med Res 134:679–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma G, Dang S, Gupta S, Gabrani R (2018) Antibacterial activity, cytotoxicity, and the mechanism of action of bacteriocin from Bacillus subtilis GAS101. Med Princ Pract 27:186–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheehan G, Bergsson G, McElvaney NG, Reeves EP, Kavanagh K (2018) The human cathelicidin antimicrobial peptide LL-37 Promotes the growth of the pulmonary pathogen Aspergillus fumigatus. Infect Immun 86:e00097-e118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenkarev ZO, Balandin SV, Trunov KI, Paramonov AS, Sukhanov SV, Barsukov LI, Arseniev AS, Ovchinnikova TV (2011) Molecular mechanism of action of β-hairpin antimicrobial peptide arenicin: oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers. Biochemistry 50:6255–6265

    Article  CAS  PubMed  Google Scholar 

  • Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL (2016) Biomedical applications of nisin. J Appl Microbiol 120:1449–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu G, Chen Y, Liu T, Ren S, Kong Y (2019) Antimicrobial peptide cathelicidin-BF inhibits platelet aggregation by blocking protease-activated receptor 4. Int J Pept Res Ther 25:349–358

    Article  CAS  Google Scholar 

  • Silva JP, Dhall S, Garcia M, Chan A, Costa C, Gama M, Martins-Green M (2015) Improved burn wound healing by the antimicrobial peptide LLKKK18 released from conjugates with dextrin embedded in a carbopol gel. Acta Biomater 26:249–262

    Article  CAS  PubMed  Google Scholar 

  • Silva ON, de la Fuente-Núñez C, Haney EF, Fensterseifer IC, Ribeiro SM, Porto WF, Brown P, Faria-Junior C, Rezende TM, Moreno SE, Lu TK, Hancock RE, Franco OL (2016) An anti-infective synthetic peptide with dual antimicrobial and immunomodulatory activities. Sci Rep 6:35465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Nadhe S, Wadhwani S, Shedbalkar U, Chopade BA (2016) Nanoparticles for control of biofilms of acinetobacter species. Materials (Basel, Switzerland) 9:383

    Article  PubMed  Google Scholar 

  • Singh R, Miriyala SS, Giri L, Mitra K, Kareenhalli VV (2017) Identification of unstructured model for subtilin production through Bacillus subtilis using hybrid genetic algorithm. Process Biochem 60:1–12

    Article  CAS  Google Scholar 

  • Som A, Vemparala S, Ivanov I, Tew GN (2008) Synthetic mimics of antimicrobial peptides. Biopolymers 90:83–93

    Article  CAS  PubMed  Google Scholar 

  • Splith K, Neundorf I (2011) Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur Biophys J (EBJ) 40:387–397

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Dashora K, Ameta KL, Singh NP, El-Enshasy HA, Pagano MC, Hesham AE, Sharma GD, Sharma M, Bhargava A (2021) Cysteine-rich antimicrobial peptides from plants: the future of antimicrobial therapy. Phytother Res (PTR) 35:256–277

    Article  CAS  PubMed  Google Scholar 

  • Starling S (2017) Innate immunity: a new way out for lysozyme. Nat Rev Gastroenterol Hepatol 14:567

    Article  PubMed  Google Scholar 

  • Starr CG, Maderdrut JL, He J, Coy DH, Wimley WC (2018) Pituitary adenylate cyclase-activating polypeptide is a potent broad-spectrum antimicrobial peptide: structure-activity relationships. Peptides 104:35–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Struyfs C, Cammue BPA, Thevissen K (2021) Membrane-interacting antifungal peptides. Front Cell Dev Biol 9:649875

    Article  PubMed  PubMed Central  Google Scholar 

  • Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 160:91–96

    Article  CAS  PubMed  Google Scholar 

  • Sultana A, Luo H, Ramakrishna S (2021) Antimicrobial peptides and their applications in biomedical sector. Antibiotics (Basel, Switzerland) 10:1094

    CAS  PubMed  Google Scholar 

  • Sun T, Zhan B, Gao Y (2015) A novel cathelicidin from Bufo bufo gargarizans Cantor showed specific activity to its habitat bacteria. Gene 571:172–177

    Article  CAS  PubMed  Google Scholar 

  • Tahir HM, Zaheer A, Khan AA, Abbas MST (2017) Antibacterial potential of venom extracted from wolf spider, Lycosa terrestris (Araneae: Lycosiade). Indian J Anim Res 52:286–290

    Google Scholar 

  • Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD (2018) Antimicrobial peptides from different plant sources: isolation, characterisation, and purification. Phytochemistry 154:94–105

    Article  CAS  PubMed  Google Scholar 

  • Tang Z, Ma Q, Chen X, Chen T, Ying Y, Xi X, Wang L, Ma C, Shaw C, Zhou M (2021) Recent advances and challenges in nanodelivery systems for antimicrobial peptides (AMPs). Antibiotics (Basel, Switzerland) 10:990

    CAS  PubMed  Google Scholar 

  • Taniguchi M, Saito K, Aida R, Ochiai A, Saitoh E, Tanaka T (2019) Wound healing activity and mechanism of action of antimicrobial and lipopolysaccharide-neutralizing peptides from enzymatic hydrolysates of rice bran proteins. J Biosci Bioeng 128:142–148

    Article  CAS  PubMed  Google Scholar 

  • Tejesvi MV, Segura DR, Schnorr KM, Sandvang D, Mattila S, Olsen PB, Neve S, Kruse T, Kristensen HH, Pirttilä AM (2013) An antimicrobial peptide from endophytic Fusarium tricinctum of Rhododendron tomentosum Harmaja. Fungal Divers 60:153–159

    Article  Google Scholar 

  • Terras FR, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J et al (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7:573–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa RK, Diep DB, Tønnesen HH (2020) Topical antimicrobial peptide formulations for wound healing: current developments and future prospects. Acta Biomater 103:52–67

    Article  CAS  PubMed  Google Scholar 

  • Toda H, Williams JA, Gulledge M, Sehgal A (2019) A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila. Science (New York, N.Y.) 363:509–515

    Article  CAS  PubMed  Google Scholar 

  • Topuz F, Uyar T (2018) Electrospinning of cyclodextrin functional nanofibers for drug delivery applications. Pharmaceutics 11:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Topuz F, Abdulhamid MA, Holtzl T, Szekely G (2021) Nanofiber engineering of microporous polyimides through electrospinning: influence of electrospinning parameters and salt addition. Mater Des 198:109280

    Article  CAS  Google Scholar 

  • Tossi A, Scocchi M, Skerlavaj B, Gennaro R (1994) Identification and characterization of a primary antibacterial domain in CAP18, a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett 339:108–112

    Article  CAS  PubMed  Google Scholar 

  • Tripathi S, Tecle T, Verma A, Crouch E, White M, Hartshorn KL (2013) The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins. J Gen Virol 94:40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulini FL, Lohans CT, Bordon KC, Zheng J, Arantes EC, Vederas JC, De Martinis EC (2014) Purification and characterization of antimicrobial peptides from fish isolate Carnobacterium maltaromaticum C2: Carnobacteriocin X and carnolysins A1 and A2. Int J Food Microbiol 173:81–88

    Article  CAS  PubMed  Google Scholar 

  • van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci (CMLS) 70:3545–3570

    Article  PubMed  Google Scholar 

  • van Harten RM, van Woudenbergh E, van Dijk A, Haagsman HP (2018) Cathelicidins: immunomodulatory antimicrobials. Vaccines 6:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Parijs J, Broekaert WF, Goldstein IJ, Peumans WJ (1991) Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 183:258–264

    Article  PubMed  Google Scholar 

  • Vogel H, Badapanda C, Knorr E, Vilcinskas A (2014) RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus. Insect Mol Biol 23:98–112

    Article  CAS  PubMed  Google Scholar 

  • Wang G (2022) Unifying the classification of antimicrobial peptides in the antimicrobial peptide database. Methods Enzymol 663:1–18

    Article  CAS  PubMed  Google Scholar 

  • Wang KR, Zhang BZ, Zhang W, Yan JX, Li J, Wang R (2008) Antitumor effects, cell selectivity and structure-activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 29:963–968

    Article  CAS  PubMed  Google Scholar 

  • Wang DM, Jiao X, Plotnikoff NP, Griffin N, Qi RQ, Gao XH, Shan FP (2017) Killing effect of methionine enkephalin on melanoma in vivo and in vitro. Oncol Rep 38:2132–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Sun Y, Wang F, You L, Cao Y, Tang R, Wen J, Cui X (2020) A novel endogenous antimicrobial peptide CAMP(211–225) derived from casein in human milk. Food Funct 11:2291–2298

    Article  CAS  PubMed  Google Scholar 

  • Water JJ, Kim Y, Maltesen MJ, Franzyk H, Foged C, Nielsen HM (2015) Hyaluronic acid-based nanogels produced by microfluidics-facilitated self-assembly improves the safety profile of the cationic host defense peptide novicidin. Pharm Res 32:2727–2735

    CAS  PubMed  Google Scholar 

  • Wende C, Kulak N (2015) Fluorophore ATCUN complexes: combining agent and probe for oxidative DNA cleavage. Chem Commun (Camb) 51:12395–12398

    Article  CAS  PubMed  Google Scholar 

  • Wescombe PA, Tagg JR (2003) Purification and characterization of streptin, a type A1 lantibiotic produced by Streptococcus pyogenes. Appl Environ Microbiol 69:2737–2747

    Article  PubMed  PubMed Central  Google Scholar 

  • Wrońska AK, Boguś MI (2020) Heat shock proteins (HSP 90, 70, 60, and 27) in Galleria mellonella (Lepidoptera) hemolymph are affected by infection with Conidiobolus coronatus (Entomophthorales). PLoS ONE 15:e0228556

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu C, Wu T, Fang Z, Zheng J, Xu S, Chen S, Hu Y, Ye X (2016) Formation, characterization and release kinetics of chitosan/γ-PGA encapsulated nisin nanoparticles. RSC Adv 6:46686–46695

    Article  CAS  Google Scholar 

  • Wu Q, Patočka J, Kuča K (2018) Insect antimicrobial peptides, a mini review. Toxins 10:461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Biswas S, Garcia De Gonzalo CV, van der Donk WA (2019) Investigations into the mechanism of action of sublancin. ACS Infect Dis 5:454–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 30:343–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Mahato M, Pathak R, Jha D, Kumar B, Deka SR, Gautam HK, Sharma AK (2014) Multifunctional self-assembled cationic peptide nanostructures efficiently carry plasmid DNA in vitro and exhibit antimicrobial activity with minimal toxicity. J Mater Chem B 2:4848–4861

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi R, Kawano K, Yamaoka Y, Taniguchi A, Yano Y, Takasu K, Matsuzaki K (2022) Development of antimicrobial peptide-antibiotic conjugates to improve the outer membrane permeability of antibiotics against Gram-negative bacteria. ACS Infect Dis 8:2339–2347

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Cai J, Zhang B, Wang Y, Wong DF, Siu SWI (2022) Recent progress in the discovery and design of antimicrobial peptides using traditional machine learning and deep learning. Antibiotics (Basel, Switzerland) 11:145

    Google Scholar 

  • Yang YT, Lee MR, Lee SJ, Kim S, Nai YS, Kim JS (2018) Tenebrio molitor Gram-negative-binding protein 3 (TmGNBP3) is essential for inducing downstream antifungal Tenecin 1 gene expression against infection with Beauveria bassiana JEF-007. Insect Sci 25:969–977

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, He S, Wu H, Yin T, Wang L, Shan A (2021) Nanostructured antimicrobial peptides: crucial steps of overcoming the bottleneck for clinics. Front Microbiol 12:710199

    Article  PubMed  PubMed Central  Google Scholar 

  • Yazici A, Ortucu S, Taskin M, Marinelli L (2018) Natural-based antibiofilm and antimicrobial peptides from microorganisms. Curr Top Med Chem 18:2102–2107

    Article  PubMed  Google Scholar 

  • Yoshimura T, McLean MH, Dzutsev AK, Yao X, Chen K, Huang J, Gong W, Zhou J, Xiang Y, Badger H, O’Huigin C, Thovarai V, Tessarollo L, Durum SK, Trinchieri G, Bian XW, Wang JM (2018) The antimicrobial peptide CRAMP is essential for colon homeostasis by maintaining microbiota balance. J Immunol (Baltimore, MD 1950) 200:2174–2185

    Article  CAS  Google Scholar 

  • Young-Speirs M, Drouin D, Cavalcante PA, Barkema HW, Cobo ER (2018) Host defense cathelicidins in cattle: types, production, bioactive functions and potential therapeutic and diagnostic applications. Int J Antimicrob Agents 51:813–821

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Lo JC, Yan M, Yang X, Brooks DE, Hancock RE, Lange D, Kizhakkedathu JN (2017) Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials 116:69–81

    Article  CAS  PubMed  Google Scholar 

  • Zainab A, Ashish N, Ragnath V (2019) Salivary levels of antimicrobial peptides in chronic periodontitis patients with type 2 diabetes. J Int Acad Periodontol 21:36–44

    PubMed  Google Scholar 

  • Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48

    Article  PubMed  Google Scholar 

  • Zare M, Dziemidowicz K, Williams GR, Ramakrishna S (2021) Encapsulation of pharmaceutical and nutraceutical active ingredients using electrospinning processes. Nanomaterials (Basel, Switzerland) 11:1968

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2019) Antimicrobial peptides of multicellular organisms: my perspective. Adv Exp Med Biol 1117:3–6

    Article  CAS  PubMed  Google Scholar 

  • Zeya HI, Spitznagel JK (1963) Antibacterial and Enzymic Basic Proteins from Leukocyte Lysosomes: Separation and Identification. Science 142:1085–1087

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yang M (2022) Antimicrobial peptides: from design to clinical application. Antibiotics (Basel, Switzerland) 11:349

    CAS  PubMed  Google Scholar 

  • Zhang Z-T, Zhu S-Y (2009) Drosomycin, an essential component of antifungal defence in Drosophila. Insect Mol Biol 18:549–556

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chiang FI, Wu L, Czyryca PG, Li D, Chang CW (2008) Surprising alteration of antibacterial activity of 5″-modified neomycin against resistant bacteria. J Med Chem 51:7563–7573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Cui X, Fu Y, Zhang J, Zhou Y, Sun Y, Wang X, Li Y, Liu Q, Chen T (2017) Antimicrobial activity and mechanism of the human milk-sourced peptide Casein201. Biochem Biophys Res Commun 485:698–704

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Zhang J, Liu M, Huang M (2018) Molecular cloning, expression and antibacterial activity of goose-type lysozyme gene in Microptenus salmoides. Fish Shellfish Immunol 82:9–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Liang W, Gong W, Yoshimura T, Chen K, Wang JM (2019) The critical role of the antimicrobial peptide LL-37/ CRAMP in protection of colon microbiota balance, mucosal homeostasis, anti-inflammatory responses, and resistance to carcinogenesis. Crit Rev Immunol 39:83–92

    Article  PubMed  Google Scholar 

  • Zhang R, Jiang X, Qiao J, Wang Z, Tong A, Yang J, Yang S, Yang L (2021a) Antimicrobial peptide DP7 with potential activity against SARS coronavirus infections. Signal Transduct Target Ther 6:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, Cheng XR, Liu J, Kang J, Fu CY (2021b) Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res 8:48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Huang Y, Gao S, Cui Y, He D, Wang L, Chen Y (2013) Comparison on effect of hydrophobicity on the antibacterial and antifungal activities of α-helical antimicrobial peptides. Sci China Chem 56:1307–1314

    Article  CAS  Google Scholar 

  • Zhong C, Zhu N, Zhu Y, Liu T, Gou S, Xie J, Yao J, Ni J (2020) Antimicrobial peptides conjugated with fatty acids on the side chain of D-amino acid promises antimicrobial potency against multidrug-resistant bacteria. Eur J Pharm Sci 141:105123

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Liu P, Niu Z-W (2017) A perspective on general direction and challenges facing antimicrobial peptides. Chin Chem Lett 28:703–708

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by Sri Shanmugha College of Engineering and Technology, Tamil Nadu, India.

Author information

Authors and Affiliations

Authors

Contributions

KK: writing draft, review. NRS: Technical correction, editing and validation. GGG: Supervision, conceptualization and validation.

Corresponding author

Correspondence to G. Govindarajan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalimuthu, K., Srinivasan, N.R. & Govindarajan, G. Antibiotic-Peptide Conjugation Against Multi-drug Resistant Pathogens: A Comprehensive Review for Therapeutics and Drug Delivery Strategies. Int J Pept Res Ther 29, 91 (2023). https://doi.org/10.1007/s10989-023-10561-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10989-023-10561-y

Keywords

Navigation