Skip to main content

Advertisement

Log in

A Review on Mitochondrial Derived Peptide Humanin and Small Humanin-Like Peptides and Their Therapeutic Strategies

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The peptides are known to have diverse therapeutic indications and help cure many disease conditions. The mitochondrial genome comprises a novel class of micro peptides with various biological effects. Human mitochondrial peptides are among those that have a favourable impact on medicinal applications. Mitochondrial-derived peptides are small therapeutic peptides transcribed through mitochondrial DNA open-reading frames. Humanin is a mitochondrial peptide inhibiting complex I activity and reducing oxidative stress. It has significant apoptosis activity; therefore, it acts as an anti-apoptotic agent in the testis, boosting its reproductive role. It primarily affects cardioprotective and neuroprotective pathways, which operate as Alzheimer’s disease treatment agents. SHLPs and humanin were derived from mitochondrially encoded 16s rRNA small open reading frames. This peptide enhances mitochondrial functions and the survival of cells in response to oxidative stress. SHLP (1–6) has distinct and overlapping functions with humanin which regulate cell viability. The anti-diabetic activity is present in SHLP 2 and 3, which are insulin-resistant. Likewise, SHLP-6 has an apoptotic effect on cancer cells while it protects the cells against mitochondrial-mediated apoptosis. The mitochondrial-derived peptides increase insulin sensitivity, stimulating glucose absorption through peripheral tissues while decreasing glucose synthesis in the liver. These peptides are helpful in the treatment of multiple diseases. Thus, in this review discusses the mitochondrial peptide-humanin and SHLP types and their therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

SHLP:

Small humanin-like peptide

MDP:

Mitochondrial derived Peptide

HN:

Humanin

ATP:

Adenosine triphosphate

SmORF:

Small open reading Frame

ORF:

Open reading frame

DNA:

Deoxy-ribonucleic acid

rDNA:

Recombinant deoxy-ribonucleic acid

OXPHOS:

Oxidative phosphorylation system

mtDNA:

Mitochondrial deoxy-ribonucleic acid

rRNA:

Recombinant ribonucleic acid

HNG:

Humanin analogue

IncRNAs:

long non-coding RNAs

References

  • Alfadhli EM (2015) Gestational diabetes Mellitus. Saudi Med J 36(4):399–406

    PubMed  PubMed Central  Google Scholar 

  • Basrai MA, Hieter P, Boeke JD (1997) Small open reading frames: beautiful needles in the haystack. Genome Res 7(8):768–771

    CAS  PubMed  Google Scholar 

  • Bellance N, Lestienne P, Rossignol R (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci-Landmark 14(11):4015–4034

    Google Scholar 

  • Blake R, Trounce IA (2014) Mitochondrial dysfunction and complications associated with diabetes. Biochim Biophys Acta 1840(4):1404–1412

    CAS  PubMed  Google Scholar 

  • Bodzioch M et al (2009) Evidence for potential functionality of nuclearly-encoded humanin isoforms. Genomics 94(4):247–256

    CAS  PubMed  Google Scholar 

  • Boutari C et al (2022) Humanin and diabetes mellitus: a review of and studies. World J Diabetes 13(3):213–223

    PubMed  PubMed Central  Google Scholar 

  • Caricasole A et al (2002) A novel rat gene encoding a humanin-like peptide endowed with broad neuroprotective activity. FASEB J 16(10):1331–1333

    CAS  PubMed  Google Scholar 

  • Chiba T et al (2005) Development of a femtomolar-acting humanin derivative named colivelin by attaching activity-dependent neurotrophic factor to its N terminus: characterization of colivelin-mediated neuroprotection against Alzheimer’s disease-relevant insults in vitro and in vivo. J Neurosci 25(44):10252–10261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton DA (1992) Structure and function of the mitochondrial genome. J Inherit Metab Di. https://doi.org/10.1007/bf01799602

    Article  Google Scholar 

  • Cobb LJ et al (2016) Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging 8(4):796–809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui H, Kong Y, Zhang H (2012) Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012:646354

    PubMed  Google Scholar 

  • Dabravolski SA et al (2021) The role of mitochondria-derived peptides in cardiovascular diseases and their potential as therapeutic targets. Int J Mol Sci. https://doi.org/10.3390/ijms22168770

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz-Vegas A et al (2020) Is mitochondrial dysfunction a common root of noncommunicable chronic diseases ? Endocr Rev. https://doi.org/10.1210/endrev/bnaa005

    Article  PubMed  PubMed Central  Google Scholar 

  • Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101(4):301–320

    CAS  PubMed  Google Scholar 

  • Gong Z, Tas E, Muzumdar R (2014) Humanin and age-related diseases: a new link? Front Endocrinol 5:210

    Google Scholar 

  • Hashemi ZS et al (2021) Approaches for the design and optimization of interfering peptides against protein-protein interactions. Front Mol Biosci 8:669431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto Y, Niikura T, Tajima H et al (2001a) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci USA 98(11):6336–6341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto Y, Niikura T, Ito Y et al (2001b) Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer’s disease-relevant insults. J Neurosci 21(23):9235–9245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawley JA et al (2014) Integrative biology of exercise. Cell 159(4):738–749

    CAS  PubMed  Google Scholar 

  • Hombach S, Kretz M (2016) Non-coding RNAs: classification, Biology and Functioning. Adv Exp Med Biol 937:3–17

    CAS  PubMed  Google Scholar 

  • Jiang H, Xu Y, Cao L (2022) The protective effects of S14G-humanin on gestational diabetes mellitus symptoms. Gynecol Endocrinol 38(6):503–507

    CAS  PubMed  Google Scholar 

  • Khaksar M et al (2018) High glucose condition limited the angiogenic/cardiogenic capacity of murine cardiac progenitor cells in in vitro and in vivo milieu. Cell Biochem Funct 36(7):346–356

    CAS  PubMed  Google Scholar 

  • Khan MAB et al (2020) Epidemiology of type 2 diabetes - global burden of disease and forecasted trends. J Epidemiol Global Health 10(1):107–111

    Google Scholar 

  • Kim S-J et al (2017) Mitochondrially derived peptides as novel regulators of metabolism. J Physiol 595(21):6613–6621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S-J et al (2018) Mitochondrial peptides modulate mitochondrial function during cellular senescence. Aging 10(6):1239–1256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein LE et al (2013) A humanin analog decreases oxidative stress and preserves mitochondrial integrity in cardiac myoblasts. Biochem Biophys Res Commun 440(2):197–203

    CAS  PubMed  Google Scholar 

  • Kumagai H et al (2023) Novel insights into mitochondrial DNA: mitochondrial microproteins and mtDNA variants modulate athletic performance and age-related diseases. Genes 14(2):286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C et al (2014) IGF-I regulates the age-dependent signaling peptide humanin. Aging Cell 13(5):958–961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C et al (2015) The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metabol 21(3):443–454

    CAS  Google Scholar 

  • Li W et al (2020) Humanin ameliorates free fatty acid-Induced endothelial inflammation by suppressing the NLRP3 inflammasome. ACS Omega 5(35):22039–22045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Logan IS (2017) Pseudogenization of the gene is common in the mitochondrial DNA of many vertebrates. Zoological Res 38(4):198–202

    CAS  Google Scholar 

  • Lue Y et al (2018) Humanin analog enhances the protective effect of dexrazoxane against doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 315(3):H634–H643

    PubMed  PubMed Central  Google Scholar 

  • Maftei M, Tian X, Manea M, Exner TE, Schwanzar D, von Arnim CA, Przybylski M (2012) Interaction structure of the complex between neuroprotective factor humanin and Alzheimer’s β-amyloid peptide revealed by affinity mass spectrometry and molecular modeling. J Pept Sci 18(6):373–382

    CAS  PubMed  Google Scholar 

  • Matsuoka M (2015) Protective effects of humanin and calmodulin-like skin protein in Alzheimer’s disease and broad range of abnormalities. Mol Neurobiol 51(3):1232–1239

    CAS  PubMed  Google Scholar 

  • Mehta HH et al (2019) Metabolomic profile of diet-induced obesity mice in response to humanin and small humanin-like peptide 2 treatment. Metabolomics 15(6):88

    PubMed  PubMed Central  Google Scholar 

  • Mendelsohn AR, Larrick JW (2018) Mitochondrial-derived peptides exacerbate senescence. Rejuven Res 21(4):369–373

    CAS  Google Scholar 

  • Mercer TR et al (2011) The human mitochondrial transcriptome. Cell 146(4):645–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meridor D, Cohen A, Khalfin B, Uppalapati L, Kasher R, Nathan I, Parola AH (2019) The protective effect of humanin derivative AGA (C8R)-HNG17 against acetaminophen-induced liver injury in mice. Int J Pept Res Ther 25:565–571

    CAS  Google Scholar 

  • Miller B et al (2020) Peptides derived from small mitochondrial open reading frames: genomic, biological, and therapeutic implications. Exp Cell Res 393(2):112056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minasyan L et al (2017) Protective mechanisms of the mitochondrial-derived peptide humanin in oxidative and endoplasmic reticulum stress in RPE cells. Oxid Med Cell Longev 2017:1675230

    PubMed  PubMed Central  Google Scholar 

  • Mortz M et al (2020) Comparative genomic analysis identifies small open reading frames (sORFs) with peptide-encoding features in avian 16S rDNA. Genomics 112(2):1120–1127

    CAS  PubMed  Google Scholar 

  • Muzumdar RH et al (2010) Acute humanin therapy attenuates myocardial ischemia and reperfusion injury in mice. Arterioscler Thromb Vasc Biol 30(10):1940–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nan A et al (2019) Circular RNA circNOL10 inhibits lung cancer development by promoting SCLM1-Mediated transcriptional regulation of the humanin polypeptide family. Adv Sci 6(2):1800654

    Google Scholar 

  • Nashine S et al (2017) Humanin G (HNG) protects age-related macular degeneration (AMD) transmitochondrial ARPE-19 cybrids from mitochondrial and cellular damage. Cell Death Dis 8(7):e2951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nashine S et al (2018) Characterizing the protective effects of SHLP2, a mitochondrial-derived peptide, in macular degeneration. Sci Rep 8(1):15175

    PubMed  PubMed Central  Google Scholar 

  • Nguyen-Ngo C et al (2019) Molecular pathways disrupted by gestational diabetes mellitus. J Mol Endocrinol 63(3):R51–R72

    CAS  PubMed  Google Scholar 

  • Ohno-Matsui K (2011) Parallel findings in age-related macular degeneration and Alzheimer’s disease. Prog Retin Eye Res 30(4):217–238

    PubMed  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290(5806):470–474

    CAS  PubMed  Google Scholar 

  • Okada AK et al (2017) The mitochondrial-derived peptides, HumaninS14G and small humanin-like peptide 2, exhibit chaperone-like activity. Sci Rep 7(1):7802

    PubMed  PubMed Central  Google Scholar 

  • Papa S et al (2012) The oxidative phosphorylation system in mammalian mitochondria. Adv Exp Med Biol 942:3–37

    CAS  PubMed  Google Scholar 

  • Qian K et al (2022) Cholinergic neuron targeting nanosystem delivering hybrid peptide for combinatorial mitochondrial therapy in Alzheimer’s disease. ACS Nano 16(7):11455–11472

    CAS  PubMed  Google Scholar 

  • Ramanjaneya M et al (2019) Mitochondrial-derived peptides are down regulated in diabetes subjects. Front Endocrinol 10:331

    Google Scholar 

  • Ramirez-Torres A et al (2022) Racial differences in circulating mitochondria-derived peptides may contribute to prostate cancer health disparities. Prostate 82(13):1248–1257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao M et al (2019) Humanin levels in human seminal plasma and spermatozoa are related to sperm quality. Andrology 7(6):859–866

    CAS  PubMed  Google Scholar 

  • Ratnayaka JA, Serpell LC, Lotery AJ (2015) Dementia of the eye: the role of amyloid beta in retinal degeneration. Eye 29(8):1013–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Regmi SG, Rolland SG, Conradt B (2014) Age-dependent changes in mitochondrial morphology and volume are not predictors of lifespan. Aging 6(2):118–130

    PubMed  PubMed Central  Google Scholar 

  • Rochette L et al (2014) Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta 1840(9):2709–2729

    CAS  PubMed  Google Scholar 

  • Rochette L et al (2020) Role of humanin, a mitochondrial-derived peptide, in cardiovascular disorders. Arch Cardiovasc Dis 113(8–9):564–571

    PubMed  Google Scholar 

  • Ruiz D et al (2022) Evolution of mitochondrially derived peptides humanin and MOTSc, and changes in insulin sensitivity during early gestation in women with and without gestational diabetes. J Clin Med Res. https://doi.org/10.3390/jcm11113003

    Article  Google Scholar 

  • Saghatelian A, Couso JP (2015) Discovery and characterization of smORF-encoded bioactive polypeptides. Nat Chem Biol 11(12):909–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salemi M et al (2023) Humanin gene expression in subjects with Parkinson’s disease. Mol Biol Rep 50(3):2943–2949

    CAS  PubMed  Google Scholar 

  • Scheffler S (2008) Cosmopolitanism, justice & institutions. Daedalus. https://doi.org/10.1162/daed.2008a.137.3.68

    Article  Google Scholar 

  • Scheffler IE (2008) Mitochondria. Wiley-Liss, Hoboken

    Google Scholar 

  • Sequeira IR et al (2021) Plasma mitochondrial derived peptides MOTS-c and SHLP2 positively associate with android and liver fat in people without diabetes. Biochim Biophys Acta 1865(11):129991

    CAS  Google Scholar 

  • Shabaninejad Z et al (2019) Circular RNAs in cancer: new insights into functions and implications in ovarian cancer. J Ovarian Res 12(1):84

    PubMed  PubMed Central  Google Scholar 

  • Singh S et al (2015) PEPstrMOD: structure prediction of peptides containing natural, non-natural and modified residues. Biol Direct 10:73

    PubMed  PubMed Central  Google Scholar 

  • Sreekumar PG et al (2016) The mitochondrial-derived peptide humanin protects RPE Cells from oxidative stress, senescence, and mitochondrial dysfunction. Invest Opthalmol Vis Sci. https://doi.org/10.1167/iovs.15-17053

    Article  Google Scholar 

  • St Laurent G, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet 31(5):239–251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeting AN et al (2016) Gestational diabetes mellitus in early pregnancy: evidence for poor pregnancy outcomes despite treatment. Diabetes Care 39(1):75–81

    CAS  PubMed  Google Scholar 

  • Swerdlow RH (2018) Mitochondria and mitochondrial cascades in Alzheimer’s Disease. J Alzheimer’s Dis 62(3):1403–1416

    CAS  Google Scholar 

  • Tajima H et al (2005) A humanin derivative, S14G-HN, prevents amyloid-beta-induced memory impairment in mice. J Neurosci Res 79(5):714–723

    CAS  PubMed  Google Scholar 

  • van Heesch S et al (2019) The translational landscape of the human heart. Cell 178(1):242-260e29

    PubMed  Google Scholar 

  • Wang Y et al (2021) Humanin alleviates insulin resistance in polycystic ovary syndrome: a human and rat model-based study. Endocrinology. https://doi.org/10.1210/endocr/bqab056

    Article  PubMed  PubMed Central  Google Scholar 

  • Wisniewski T, Goñi F (2015) Immunotherapeutic approaches for Alzheimer’s disease. Neuron 85(6):1162–1176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodhead JST et al (2020) High-intensity interval exercise increases humanin, a mitochondrial encoded peptide, in the plasma and muscle of men. J Appl Physiol 128(5):1346–1354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao J et al (2017) Low circulating levels of the mitochondrial-peptide hormone SHLP2: novel biomarker for prostate cancer risk. Oncotarget 8(55):94900–94909

    PubMed  PubMed Central  Google Scholar 

  • Yang L et al (2014) Species identification through mitochondrial rRNA genetic analysis. Sci Rep 4:4089

    PubMed  PubMed Central  Google Scholar 

  • Yao J et al (2009) Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 106(34):14670–14675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yousef H, Khandoker AH, Feng SF, Tarvainen MP, Jelinek HF (2022) Heart Rate Variability Analysis Reveals a Non-monotonic Relationship between Humanin Concentration and Cardiac Autonomic Regulation

  • Zárate SC et al (2019) Humanin, a mitochondrial-derived peptide released by astrocytes, prevents synapse loss in hippocampal neurons. Front Aging Neurosci 11:123

    PubMed  PubMed Central  Google Scholar 

  • Zhang S et al (2020) Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly. Nat Commun 11(1):1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Xiang M (2022) Mitochondrion-located peptides and their pleiotropic physiological functions. FEBS J 289(22):6919–6935

    CAS  PubMed  Google Scholar 

  • Zhu S et al (2022a) The molecular structure and role of humanin in neural and skeletal diseases, and in tissue regeneration. Front cell Dev biology 10:823354

    Google Scholar 

  • Zhu Y et al (2022b) Structural basis of FPR2 in recognition of Aβ and neuroprotection by humanin. Nat Commun 13(1):1775

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have agreed to be named as authors on this manuscript. Any work (data, text, or theories) of others besides the authors has been properly acknowledged. The work is original and not previously published. All data are true and accurate to the knowledge of the authors.

Corresponding authors

Correspondence to Nibedita Dey, Ajay Guru or Jesu Arockiaraj.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thamarai Kannan, H., Issac, P.K., Dey, N. et al. A Review on Mitochondrial Derived Peptide Humanin and Small Humanin-Like Peptides and Their Therapeutic Strategies. Int J Pept Res Ther 29, 86 (2023). https://doi.org/10.1007/s10989-023-10558-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10989-023-10558-7

Keywords

Navigation