Skip to main content

Advertisement

Log in

Pivotal Role of Peptides in Gastric Carcinoma: Diagnosis and Therapy

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Gastric cancer (GC) is still ranked fourth among malignant cancers and remained as the second leading cause of cancer related death. There is mounting evidence that emphasizes on the need for further investigation on the specific receptors overexpression roles in GC progression. Low efficiency and impotence of the common methods for targeting gastric tumorigenesis and related metastases are enough to convince researchers to continue their investigation on new approaches of effective GC targeting. Due to the suitable characteristics of peptides, such as high affinity and specificity, they have great potential for cancer cell targeting. Overexpression of specific targets in GC can facilitate the application of peptide-based pharmaceuticals for effective tumor targeting and therapy and early diagnosis with help of fluorescents or radionuclides. In this review article, we paid particular attention to the characterization of peptide-based pharmaceuticals and radiopharmaceuticals that have been investigated in recent years for GC diagnosis and therapy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Jemal A et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    PubMed  Google Scholar 

  2. Kelley JR, Duggan JM (2003) Gastric cancer epidemiology and risk factors. J Clin Epidemiol 56(1):1–9

    PubMed  Google Scholar 

  3. Guggenheim DE, Shah MA (2013) Gastric cancer epidemiology and risk factors. J Surg Oncol 107(3):230–236

    PubMed  Google Scholar 

  4. Parkin DM et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108

    PubMed  Google Scholar 

  5. Berardi R et al (2004) Gastric cancer treatment: a systematic review. Oncol Rep 11(4):911–916

    PubMed  Google Scholar 

  6. Rawla P, Barsouk A (2019) Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol 14(1):26–38

    CAS  PubMed  Google Scholar 

  7. Cavatorta O et al (2018) Epidemiology of gastric cancer and risk factors. Acta Biomed 89(8-S):82–87

    PubMed  Google Scholar 

  8. Yusefi AR et al (2018) Risk factors for gastric cancer: a systematic review. Asian Pac J Cancer Prev 19(3):591–603

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hofler H, Becker KF (2003) Molecular mechanisms of carcinogenesis in gastric cancer. Recent Results Cancer Res 162:65–72

    PubMed  Google Scholar 

  10. Zheng L et al (2004) Molecular basis of gastric cancer development and progression. Gastric Cancer 7(2):61–77

    PubMed  Google Scholar 

  11. Cheng YJ et al (2015) Silencing profilin-1 inhibits gastric cancer progression via integrin beta1/focal adhesion kinase pathway modulation. World J Gastroenterol 21(8):2323–2335

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Syu LJ et al (2016) Invasive mouse gastric adenocarcinomas arising from Lgr5 + stem cells are dependent on crosstalk between the Hedgehog/GLI2 and mTOR pathways. Oncotarget 7(9):10255–10270

    PubMed  PubMed Central  Google Scholar 

  13. Wei L, Li Y, Suo Z (2015) TSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway. Int J Clin Exp Med 8(6):8599–8607

    PubMed  PubMed Central  Google Scholar 

  14. Hao NB et al (2015) Hepatocyte growth factor (HGF) upregulates heparanase expression via the PI3K/Akt/NF-kappaB signaling pathway for gastric cancer metastasis. Cancer Lett 361(1):57–66

    CAS  PubMed  Google Scholar 

  15. Baeza MR et al (2001) Adjuvant radiochemotherapy in the treatment of completely resected, locally advanced gastric cancer. Int J Radiat Oncol Biol Phys 50(3):645–650

    CAS  PubMed  Google Scholar 

  16. Hohenberger P, Gretschel S (2003) Gastric Cancer Lancet 362(9380):305–315

    PubMed  Google Scholar 

  17. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338

    CAS  PubMed  Google Scholar 

  18. Cascinu S et al (2004) High curative resection rate with weekly cisplatin, 5-fluorouracil, epidoxorubicin, 6S-leucovorin, glutathione, and filgastrim in patients with locally advanced, unresectable gastric cancer: a report from the Italian Group for the Study of Digestive Tract Cancer (GISCAD). Br J Cancer 90(8):1521–1525

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lage H (2008) An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci 65(20):3145–3167

    CAS  PubMed  Google Scholar 

  20. Zhang D, Fan D (2010) New insights into the mechanisms of gastric cancer multidrug resistance and future perspectives. Future Oncol 6(4):527–537

    CAS  PubMed  Google Scholar 

  21. Fan D et al (2005) Bird’s-eye view on gastric cancer research of the past 25 years. J Gastroenterol Hepatol 20(3):360–365

    PubMed  Google Scholar 

  22. Yang N et al (2002) Enhanced antitumor activity and selectivity of lactoferrin-derived peptides. J Pept Res 60(4):187–197

    CAS  PubMed  Google Scholar 

  23. Chang WT et al (2011) Tilapia (Oreochromis mossambicus) antimicrobial peptide, hepcidin 1–5, shows antitumor activity in cancer cells. Peptides 32(2):342–352

    CAS  PubMed  Google Scholar 

  24. Chen JY, Lin WJ, Lin TL (2009) A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells. Peptides 30(9):1636–1642

    CAS  PubMed  Google Scholar 

  25. Zhang WJ et al (2012) Affinity peptide developed by phage display selection for targeting gastric cancer. World J Gastroenterol 18(17):2053–2060

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuipers EJ, Haringsma J (2005) Diagnostic and therapeutic endoscopy. J Surg Oncol 92(3):203–209

    CAS  PubMed  Google Scholar 

  27. Hsiung PL et al (2008) Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med 14(4):454–458

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Goetz M, Wang TD (2010) Molecular imaging in gastrointestinal endoscopy. Gastroenterology 138(3):828 –828 33 e1

    CAS  PubMed  Google Scholar 

  29. Seaman ME et al (2010) Molecular imaging agents: impact on diagnosis and therapeutics in oncology. Expert Rev Mol Med 12:e20

    PubMed  PubMed Central  Google Scholar 

  30. Ko KH et al (2014) Recent advances in molecular imaging of premalignant gastrointestinal lesions and future application for early detection of barrett esophagus. Clin Endosc 47(1):7–14

    PubMed  PubMed Central  Google Scholar 

  31. Wang T et al (2011) Sequential expression of putative stem cell markers in gastric carcinogenesis. Br J Cancer 105(5):658–665

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Takaishi S et al (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27(5):1006–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Misra S et al (2011) Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J 278(9):1429–1443

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Castella EM et al (1998) Differential expression of CD44v6 in metastases of intestinal and diffuse types of gastric carcinoma. J Clin Pathol 51(2):134–137

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4(1):33–45

    CAS  PubMed  Google Scholar 

  36. Shtivelman E, Bishop JM (1991) Expression of CD44 is repressed in neuroblastoma cells. Mol Cell Biol 11(11):5446–5453

    CAS  PubMed  PubMed Central  Google Scholar 

  37. De Marzo AM et al (1998) CD44 and CD44v6 downregulation in clinical prostatic carcinoma: relation to Gleason grade and cytoarchitecture. Prostate 34(3):162–168

    PubMed  Google Scholar 

  38. Mayer B et al (1993) De-novo expression of CD44 and survival in gastric cancer. Lancet 342(8878):1019–1022

    CAS  PubMed  Google Scholar 

  39. Harn HJ et al (1995) Differential expression of the human metastasis adhesion molecule CD44V in normal and carcinomatous stomach mucosa of Chinese subjects. Cancer 75(5):1065–1071

    CAS  PubMed  Google Scholar 

  40. Yoo CH et al (1999) Prognostic significance of CD44 and nm23 expression in patients with stage II and stage IIIA gastric carcinoma. J Surg Oncol 71(1):22–28

    CAS  PubMed  Google Scholar 

  41. Ghaffarzadehgan K et al (2008) Expression of cell adhesion molecule CD44 in gastric adenocarcinoma and its prognostic importance. World J Gastroenterol 14(41):6376–6381

    PubMed  PubMed Central  Google Scholar 

  42. Fan X et al (1996) Expression of CD44 and its variants on gastric epithelial cells of patients with Helicobacter pylori colonisation. Gut 38(4):507–512

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Washington K, Gottfried MR, Telen MJ (1994) Expression of the cell adhesion molecule CD44 in gastric adenocarcinomas. Hum Pathol 25(10):1043–1049

    CAS  PubMed  Google Scholar 

  44. Kim YS et al (1997) Molecular genetic characterization of alternatively spliced CD44 transcripts in human stomach carcinoma. J Korean Med Sci 12(6):505–513

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamaguchi A et al (1995) Expression of CD44 variant exons 8–10 in gastric cancer. Jpn J Cancer Res 86(12):1166–1171

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yasui W et al (1998) Expression of CD44 containing variant exon 9 (CD44v9) in gastric adenomas and adenocarcinomas: relation to the proliferation and progression. Int J Oncol 12(6):1253–1258

    CAS  PubMed  Google Scholar 

  47. Kurozumi K, Nishida T, Nakao K, Nakahara M, Tsujimoto M (1998) Expression of CD44 variant 6 and lymphatic invasion: importance to lymph node metastasis in gastric cancer. World J Surg 22(8):853–857;discussion 857–858

    CAS  PubMed  Google Scholar 

  48. Li SD, Howell SB (2010) CD44-targeted microparticles for delivery of cisplatin to peritoneal metastases. Mol Pharm 7(1):280–290

    CAS  PubMed  Google Scholar 

  49. Rupp U et al (2007) Safety and pharmacokinetics of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer: final results of a phase I study. Anticancer Drugs 18(4):477–485

    CAS  PubMed  Google Scholar 

  50. Serafino A et al (2011) CD44-targeting for antitumor drug delivery: a new SN-38-hyaluronan bioconjugate for locoregional treatment of peritoneal carcinomatosis. Curr Cancer Drug Targets 11(5):572–585

    CAS  PubMed  Google Scholar 

  51. Park HY et al (2012) Screening of peptides bound to breast cancer stem cell specific surface marker CD44 by phage display. Mol Biotechnol 51(3):212–220

    CAS  PubMed  Google Scholar 

  52. Matsumoto S et al (2013) The effect of control-released basic fibroblast growth factor in wound healing: histological analyses and clinical application. Plast Reconstr Surg Glob Open 1(6):e44

    PubMed  PubMed Central  Google Scholar 

  53. He B et al (2012) Basic fibroblast growth factor suppresses meiosis and promotes mitosis of ovarian germ cells in embryonic chickens. Gen Comp Endocrinol 176(2):173–181

    CAS  PubMed  Google Scholar 

  54. Bieker R et al (2003) Overexpression of basic fibroblast growth factor and autocrine stimulation in acute myeloid leukemia. Cancer Res 63(21):7241–7246

    CAS  PubMed  Google Scholar 

  55. Ghaneh P et al (2002) Molecular prognostic markers in pancreatic cancer. J Hepatobiliary Pancreat Surg 9(1):1–11

    PubMed  Google Scholar 

  56. Li Q et al (2012) A novel bFGF antagonist peptide inhibits breast cancer cell growth. Mol Med Rep 6(1):210–214

    CAS  PubMed  Google Scholar 

  57. Farhat FS et al (2012) Expression, prognostic and predictive impact of VEGF and bFGF in non-small cell lung cancer. Crit Rev Oncol Hematol 84(2):149–160

    PubMed  Google Scholar 

  58. Acevedo VD, Ittmann M, Spencer DM (2009) Paths of FGFR-driven tumorigenesis. Cell Cycle 8(4):580–588

    CAS  PubMed  Google Scholar 

  59. Ninck S et al (2003) Expression profiles of angiogenic growth factors in squamous cell carcinomas of the head and neck. Int J Cancer 106(1):34–44

    CAS  PubMed  Google Scholar 

  60. Grose R, Dickson C (2005) Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev 16(2):179–186

    CAS  PubMed  Google Scholar 

  61. Bilgic I et al (2008) Serum bFGF concentrations in gastric cancer patients. Bratisl Lek Listy 109(1):8–9

    CAS  PubMed  Google Scholar 

  62. Yang ZL, Cheng K, Han ZD (2012) Effect of bFGF on the MCF-7 cell cycle with CD44(+)/CD24(-): promoting the G0/G1–>G2/S transition. J Breast Cancer 15(4):388–392

    PubMed  PubMed Central  Google Scholar 

  63. Goldfarb M (2005) Fibroblast growth factor homologous factors: evolution, structure, and function. Cytokine Growth Factor Rev 16(2):215–220

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dey JH et al (2010) Targeting fibroblast growth factor receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis. Cancer Res 70(10):4151–4162

    CAS  PubMed  Google Scholar 

  65. Liu ZC et al (2014) AKT/GSK-3beta regulates stability and transcription of snail which is crucial for bFGF-induced epithelial-mesenchymal transition of prostate cancer cells. Biochim Biophys Acta 1840(10):3096–3105

    CAS  PubMed  Google Scholar 

  66. Rusnati M, Presta M (2007) Fibroblast growth factors/fibroblast growth factor receptors as targets for the development of anti-angiogenesis strategies. Curr Pharm Des 13(20):2025–2044

    CAS  PubMed  Google Scholar 

  67. Zhu XB et al (2005) The inhibiting effects of suramin on bFGF induced proliferation of cultured human RPE cells. Zhonghua Yan Ke Za Zhi 41(2):110–113

    CAS  PubMed  Google Scholar 

  68. Sola F et al (1999) The antitumor efficacy of cytotoxic drugs is potentiated by treatment with PNU 145156E, a growth-factor-complexing molecule. Cancer Chemother Pharmacol 43(3):241–246

    CAS  PubMed  Google Scholar 

  69. Rauch C (2009) On the relationship between drug’s size, cell membrane mechanical properties and high levels of multi drug resistance: a comparison to published data. Eur Biophys J 38(4):537–546

    CAS  PubMed  Google Scholar 

  70. Nieth C, Lage H (2005) Induction of the ABC-transporters Mdr1/P-gp (Abcb1), mrpl (Abcc1), and bcrp (Abcg2) during establishment of multidrug resistance following exposure to mitoxantrone. J Chemother 17(2):215–223

    CAS  PubMed  Google Scholar 

  71. Gurel S et al (1999) High expression of multidrug resistance-1 (MDR-1) and its relationship with multiple prognostic factors in gastric carcinomas in patients in Turkey. J Int Med Res 27(2):79–84

    CAS  PubMed  Google Scholar 

  72. Muller C et al (1995) Evidence for transcriptional control of human mdr1 gene expression by verapamil in multidrug-resistant leukemic cells. Mol Pharmacol 47(1):51–56

    CAS  PubMed  Google Scholar 

  73. Gruber A et al (2003) A phase I/II study of the MDR modulator Valspodar (PSC 833) combined with daunorubicin and cytarabine in patients with relapsed and primary refractory acute myeloid leukemia. Leuk Res 27(4):323–328

    CAS  PubMed  Google Scholar 

  74. Sandler A et al (2004) A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin Cancer Res 10(10):3265–3272

    CAS  PubMed  Google Scholar 

  75. Little E et al (1994) The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr 4(1):1–18

    PubMed  Google Scholar 

  76. Bertolotti A et al (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332

    CAS  PubMed  Google Scholar 

  77. Zhang J et al (2006) Association of elevated GRP78 expression with increased lymph node metastasis and poor prognosis in patients with gastric cancer. Clin Exp Metastasis 23(7–8):401–410

    PubMed  Google Scholar 

  78. Reddy RK et al (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278(23):20915–20924

    CAS  PubMed  Google Scholar 

  79. Zhang LJ et al (2009) Inhibition of MEK blocks GRP78 up-regulation and enhances apoptosis induced by ER stress in gastric cancer cells. Cancer Lett 274(1):40–46

    CAS  PubMed  Google Scholar 

  80. Arap MA et al (2004) Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6(3):275–284

    CAS  PubMed  Google Scholar 

  81. Pouyssegur J, Shiu RP, Pastan I (1977) Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation. Cell 11(4):941–947

    CAS  PubMed  Google Scholar 

  82. Fernandez PM et al (2000) Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat 59(1):15–26

    CAS  PubMed  Google Scholar 

  83. Koomagi R, Mattern J, Volm M (1999) Glucose-related protein (GRP78) and its relationship to the drug-resistance proteins P170, GST-pi, LRP56 and angiogenesis in non-small cell lung carcinomas. Anticancer Res 19(5B):4333–4336

    CAS  PubMed  Google Scholar 

  84. Uramoto H et al (2005) Expression of endoplasmic reticulum molecular chaperone Grp78 in human lung cancer and its clinical significance. Lung Cancer 49(1):55–62

    PubMed  Google Scholar 

  85. Jamora C, Dennert G, Lee AS (1996) Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci USA 93(15):7690–7694

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim Y et al (2006) Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry 45(31):9434–9444

    CAS  PubMed  Google Scholar 

  87. Pyrko P et al (2007) The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 67(20):9809–9816

    CAS  PubMed  Google Scholar 

  88. Sokolowska I et al (2012) Identification of a potential tumor differentiation factor receptor candidate in prostate cancer cells. FEBS J 279(14):2579–2594

    CAS  PubMed  Google Scholar 

  89. Zheng HC, Gong BC, Zhao S (2017) The meta and bioinformatics analysis of GRP78 expression in gastric cancer. Oncotarget 8(42):73017–73028

    PubMed  PubMed Central  Google Scholar 

  90. Cheng CC et al (2012) Targeting to overexpressed glucose-regulated protein 78 in gastric cancer discovered by 2D DIGE improves the diagnostic and therapeutic efficacy of micelles-mediated system. Proteomics 12(15–16):2584–2597

    CAS  PubMed  Google Scholar 

  91. Fu Z et al (2017) GRP78 positively regulates estrogenstimulated cell growth mediated by ERalpha36 in gastric cancer cells. Mol Med Rep 16(6):8329–8334

    CAS  PubMed  Google Scholar 

  92. Fang S et al (2017) Plasminogen kringle 5 suppresses gastric cancer via regulating HIF-1alpha and GRP78. Cell Death Dis 8(10):e3144

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang L et al (2014) Expression of GRP78 predicts taxane-based therapeutic resistance and recurrence of human gastric cancer. Exp Mol Pathol 96(2):235–241

    CAS  PubMed  Google Scholar 

  94. Zhang X et al (2015) Decreased functional expression of Grp78 and Grp94 inhibits proliferation and attenuates apoptosis in a human gastric cancer cell line in vitro. Oncol Lett 9(3):1181–1186

    PubMed  Google Scholar 

  95. Yang L et al (2013) GRP78 expression in gastric cancer and its clinical significance. Zhonghua Zhong Liu Za Zhi 35(11):837–842

    CAS  PubMed  Google Scholar 

  96. Kang JM et al (2015) KIAA1324 suppresses gastric cancer progression by inhibiting the oncoprotein GRP78. Cancer Res 75(15):3087–3097

    CAS  PubMed  Google Scholar 

  97. Siebke C et al (2012) Phage display biopanning identifies the translation initiation and elongation factors (IF1alpha-3 and eIF-3) as components of Hsp70-peptide complexes in breast tumour cells. Cell Stress Chaperones 17(2):145–156

    CAS  PubMed  Google Scholar 

  98. Sokolowska I et al (2012) Identification of potential tumor differentiation factor (TDF) receptor from steroid-responsive and steroid-resistant breast cancer cells. J Biol Chem 287(3):1719–1733

    CAS  PubMed  Google Scholar 

  99. Cao Y, Klionsky DJ (2007) Physiological functions of Atg6/Beclin 1: a unique autophagy-related protein. Cell Res 17(10):839–849

    CAS  PubMed  Google Scholar 

  100. Zhao Y et al (2014) Aberrant Beclin 1 expression is closely linked to carcinogenesis, differentiation, progression, and prognosis of ovarian epithelial carcinoma. Tumour Biol 35(3):1955–1964

    CAS  PubMed  Google Scholar 

  101. Qiu DM et al (2014) The expression of beclin-1, an autophagic gene, in hepatocellular carcinoma associated with clinical pathological and prognostic significance. BMC Cancer 14:327

    PubMed  PubMed Central  Google Scholar 

  102. Miracco C et al (2010) Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum Pathol 41(4):503–512

    CAS  PubMed  Google Scholar 

  103. Zaanan A et al (2015) Association of beclin 1 expression with response to neoadjuvant chemoradiation therapy in patients with locally advanced rectal carcinoma. Int J Cancer 137(6):1498–1502

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang Y et al (2013) Decrease of autophagy activity promotes malignant progression of tongue squamous cell carcinoma. J Oral Pathol Med 42(7):557–564

    CAS  PubMed  Google Scholar 

  105. Koukourakis MI et al (2010) Beclin 1 over- and underexpression in colorectal cancer: distinct patterns relate to prognosis and tumour hypoxia. Br J Cancer 103(8):1209–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fujii S et al (2008) Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci 99(9):1813–1819

    CAS  PubMed  Google Scholar 

  107. Lee YJ et al (2013) The autophagy-related marker LC3 can predict prognosis in human hepatocellular carcinoma. PLoS ONE 8(11):e81540

    PubMed  PubMed Central  Google Scholar 

  108. Xia P et al (2013) The role of beclin-1 expression in patients with gastric cancer: a meta-analysis. Tumour Biol 34(6):3303–3307

    CAS  PubMed  Google Scholar 

  109. Gallagher LE, Williamson LE, Chan EY (2016) Advances in autophagy regulatory mechanisms. Cells 5(2):24

    PubMed Central  Google Scholar 

  110. Geng QR et al (2012) Beclin-1 expression is a significant predictor of survival in patients with lymph node-positive gastric cancer. PLoS ONE 7(9):e45968

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Giatromanolaki A et al (2018) LC3A, LC3B and Beclin-1 expression in gastric cancer. Anticancer Res 38(12):6827–6833

    CAS  PubMed  Google Scholar 

  112. Huang X et al (2018) Clinical value of CagA, c-Met, PI3K and Beclin-1 expressed in gastric cancer and their association with prognosis. Oncol Lett 15(1):947–955

    PubMed  Google Scholar 

  113. Yu S et al (2016) Low expression of MAP1LC3B, associated with low Beclin-1, predicts lymph node metastasis and poor prognosis of gastric cancer. Tumour Biol 37(11):15007–15017

    CAS  PubMed  Google Scholar 

  114. Yu M et al (2013) Beclin 1 expression is an independent prognostic factor for gastric carcinomas. Tumour Biol 34(2):1071–1083

    CAS  PubMed  Google Scholar 

  115. Masuda GO et al (2016) Clinicopathological correlations of autophagy-related proteins LC3, beclin 1 and p62 in gastric Cancer. Anticancer Res 36(1):129–136

    CAS  PubMed  Google Scholar 

  116. Zhou WH et al (2012) Low expression of Beclin 1, associated with high Bcl-xL, predicts a malignant phenotype and poor prognosis of gastric cancer. Autophagy 8(3):389–400

    CAS  PubMed  Google Scholar 

  117. Fei B et al (2016) Expression and clinical significance of Beclin-1 in gastric cancer tissues of various clinical stages. Oncol Lett 11(3):2271–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Scarlatti F et al (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15(8):1318–1329

    CAS  PubMed  Google Scholar 

  119. Wu CA, Huang DY, Lin WW (2014) Beclin-1-independent autophagy positively regulates internal ribosomal entry site-dependent translation of hypoxia-inducible factor 1alpha under nutrient deprivation. Oncotarget 5(17):7525–7539

    PubMed  PubMed Central  Google Scholar 

  120. Rohatgi RA, Shaw LM (2016) An autophagy-independent function for Beclin 1 in cancer. Mol Cell Oncol 3(1):e1030539

    PubMed  Google Scholar 

  121. Wang Y et al (2017) Beclin-1 suppresses gastric cancer progression by promoting apoptosis and reducing cell migration. Oncol Lett 14(6):6857–6862

    PubMed  PubMed Central  Google Scholar 

  122. Cao QH et al (2016) Prognostic value of autophagy related proteins ULK1, Beclin 1, ATG3, ATG5, ATG7, ATG9, ATG10, ATG12, LC3B and p62/SQSTM1 in gastric cancer. Am J Transl Res 8(9):3831–3847

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Ding Y et al (2014) Expression and significance of Beclin-1 in vasculogenic mimicry formation of gastric cancer. Zhonghua Wei Chang Wai Ke Za Zhi 17(7):716–719

    PubMed  Google Scholar 

  124. Rebe C et al (2009) Induction of transglutaminase 2 by a liver X receptor/retinoic acid receptor alpha pathway increases the clearance of apoptotic cells by human macrophages. Circ Res 105(4):393–401

    CAS  PubMed  Google Scholar 

  125. Jang GY et al (2010) Transglutaminase 2 suppresses apoptosis by modulating caspase 3 and NF-kappaB activity in hypoxic tumor cells. Oncogene 29(3):356–367

    CAS  PubMed  Google Scholar 

  126. Liu S, Cerione RA, Clardy J (2002) Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 99(5):2743–2747

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kim SY (2006) Transglutaminase 2 in inflammation. Front Biosci 11:3026–3035

    CAS  PubMed  Google Scholar 

  128. Sarang Z et al (2009) Some lessons from the tissue transglutaminase knockout mouse. Amino Acids 36(4):625–631

    CAS  PubMed  Google Scholar 

  129. Zemskov EA et al (2006) The role of tissue transglutaminase in cell-matrix interactions. Front Biosci 11:1057–1076

    CAS  PubMed  Google Scholar 

  130. Janiak A, Zemskov EA, Belkin AM (2006) Cell surface transglutaminase promotes RhoA activation via integrin clustering and suppression of the Src-p190RhoGAP signaling pathway. Mol Biol Cell 17(4):1606–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kumar S, Mehta K (2012) Tissue transglutaminase constitutively activates HIF-1alpha promoter and nuclear factor-kappaB via a non-canonical pathway. PLoS ONE 7(11):e49321

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kumar S et al (2014) Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways. Int J Cancer 134(12):2798–2807

    CAS  PubMed  Google Scholar 

  133. Eckert RL et al (2015) Transglutaminase is a tumor cell and cancer stem cell survival factor. Mol Carcinog 54(10):947–958

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Assi J et al (2013) Transglutaminase 2 overexpression in tumor stroma identifies invasive ductal carcinomas of breast at high risk of recurrence. PLoS ONE 8(9):e74437

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Verma A et al (2008) Therapeutic significance of elevated tissue transglutaminase expression in pancreatic cancer. Clin Cancer Res 14(8):2476–2483

    CAS  PubMed  Google Scholar 

  136. Kotsakis P et al (2011) The role of tissue transglutaminase (TG2) in regulating the tumour progression of the mouse colon carcinoma CT26. Amino Acids 41(4):909–921

    CAS  PubMed  Google Scholar 

  137. Jeong JH et al (2013) Transglutaminase 2 expression predicts progression free survival in non-small cell lung cancer patients treated with epidermal growth factor receptor tyrosine kinase inhibitor. J Korean Med Sci 28(7):1005–1014

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Khanna M et al (2011) Targeting ovarian tumor cell adhesion mediated by tissue transglutaminase. Mol Cancer Ther 10(4):626–636

    CAS  PubMed  Google Scholar 

  139. Wang X et al (2016) Tissue transglutaminase-2 promotes gastric cancer progression via the ERK1/2 pathway. Oncotarget 7(6):7066–7079

    PubMed  PubMed Central  Google Scholar 

  140. Huang H, Chen Z, Ni X (2017) Tissue transglutaminase-1 promotes stemness and chemoresistance in gastric cancer cells by regulating Wnt/beta-catenin signaling. Exp Biol Med (Maywood) 242(2):194–202

    CAS  Google Scholar 

  141. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    CAS  PubMed  Google Scholar 

  142. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–30

    CAS  PubMed  Google Scholar 

  143. Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161(2):851–858

    CAS  PubMed  Google Scholar 

  144. Matthews W et al (1991) A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc Natl Acad Sci USA 88(20):9026–9030

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Terman BI et al (1991) Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6(9):1677–1683

    CAS  PubMed  Google Scholar 

  146. de Vries C et al (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255(5047):989

    PubMed  Google Scholar 

  147. Binétruy-Tournaire R et al (2000) Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 19(7):1525–1533

    PubMed  PubMed Central  Google Scholar 

  148. Kim KJ et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362(6423):841–844

    CAS  PubMed  Google Scholar 

  149. Waltenberger J et al (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269(43):26988–26995

    CAS  PubMed  Google Scholar 

  150. Zhou Y et al (2005) Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer Inst 97(11):823–835

    CAS  PubMed  Google Scholar 

  151. Prevete N et al (2015) The formyl peptide receptor 1 exerts a tumor suppressor function in human gastric cancer by inhibiting angiogenesis. Oncogene 34(29):3826–3838

    CAS  PubMed  Google Scholar 

  152. Cheng T-Y et al (2012) Annexin A1 is associated with gastric cancer survival and promotes gastric cancer cell invasiveness through the formyl peptide receptor/extracellular signal-regulated kinase/integrin beta-1-binding protein 1 pathway. Cancer. 118(23):5757–5767

    CAS  PubMed  Google Scholar 

  153. Cheng T-Y et al (2014) Formyl peptide receptor 1 expression is associated with tumor progression and survival in gastric cancer. Anticancer Res. 34(5):2223–2229

    CAS  PubMed  Google Scholar 

  154. Zhou Y et al (2005) Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. JNCI: J Natl Cancer Inst 97(11):823–835

    CAS  PubMed  Google Scholar 

  155. Chen K et al (2013) Formylpeptide receptor-2 contributes to colonic epithelial homeostasis, inflammation, and tumorigenesis. J Clin Investig 123(4):1694–1704

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Szczepanek J et al (2012) Expression profiles of signal transduction genes in ex vivo drug-resistant pediatric acute lymphoblastic leukemia. Anticancer Res 32:503–506

    CAS  PubMed  Google Scholar 

  157. Otani T et al (2011) Polymorphisms of the formylpeptide receptor gene (FPR1) and susceptibility to stomach cancer in 1531 consecutive autopsy cases. Biochem Biophys Res Commun 405(3):356–361

    CAS  PubMed  Google Scholar 

  158. Curnis F et al (2002) Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62(3):867–874

    CAS  PubMed  Google Scholar 

  159. Brown KC (2010) Peptidic tumor targeting agents: the road from phage display peptide selections to clinical applications. Curr Pharm Des 16(9):1040–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Ahmadpour S, Hosseinimehr SJ (2019) Recent developments in peptide-based SPECT radiopharmaceuticals for breast tumor targeting. Life Sci 239:116870

    CAS  PubMed  Google Scholar 

  161. D’Onofrio N et al (2014) Vascular-homing peptides for targeted drug delivery and molecular imaging: meeting the clinical challenges. Biochim Biophys Acta 1846(1):1–12

    PubMed  Google Scholar 

  162. Miller SJ et al (2011) In vivo fluorescence-based endoscopic detection of colon dysplasia in the mouse using a novel peptide probe. PLoS ONE 6(3):e17384

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang W, Hu Z (2019) Targeting peptide-based probes for molecular imaging and diagnosis. Adv Mater 31(45):e1804827

    PubMed  Google Scholar 

  164. Aligholikhamseh N et al (2018) 99mTc-HYNIC-(Ser) 3-LTVPWY peptide bearing tricine as co-ligand for targeting and imaging of HER2 overexpression tumor. Radiochim Acta 106(7):601–609

    CAS  Google Scholar 

  165. Ahmadpour S et al (2018) 99mTc-(tricine)-HYNIC-Lys-FROP peptide for breast tumor targeting. Anticancer Agents Med Chem 18(9):1295–1302

    CAS  PubMed  Google Scholar 

  166. Ahmadpour S, Hosseinimehr SJ (2018) PASylation as a powerful technology for improving the pharmacokinetic properties of biopharmaceuticals. Curr Drug Deliv 15(3):331–341

    CAS  PubMed  Google Scholar 

  167. Stott Reynolds TJ, Smith CJ, Lewis MR (2018) Peptide-based radiopharmaceuticals for molecular imaging of prostate cancer. Adv Exp Med Biol 1096:135–158

    PubMed  Google Scholar 

  168. Chopra A (2004) Lu-labeled DOTA-conjugated AE105 peptide (Asp-Cha-Phe-(d)Ser-(d)Arg-Tyr-Leu-Trp-Ser-CONH2). In: Molecular imaging and contrast agent database (MICAD). National Center for Biotechnology Information (US), Bethesda, MD

  169. Wang C et al (2019) Rational design of hybrid peptides: a novel drug design approach. Curr Med Sci 39(3):349–355

    PubMed  Google Scholar 

  170. Al-Benna S et al (2011) Oncolytic activities of host defense peptides. Int J Mol Sci 12(11):8027–8051

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Perez-Tomas R (2006) Multidrug resistance: retrospect and prospects in anti-cancer drug treatment. Curr Med Chem 13(16):1859–1876

    CAS  PubMed  Google Scholar 

  172. Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 1778(2):357–375

    CAS  PubMed  Google Scholar 

  173. Mader JS, Hoskin DW (2006) Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs 15(8):933–946

    CAS  PubMed  Google Scholar 

  174. Dennison SR et al (2006) Anticancer alpha-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Curr Protein Pept Sci 7(6):487–499

    CAS  PubMed  Google Scholar 

  175. Johnstone SA et al (2000) In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines. Anticancer Drug Des 15(2):151–160

    CAS  PubMed  Google Scholar 

  176. Han J et al (2016) The further characterization of the peptide specifically binding to gastric cancer. Mol Cell Probes 30(3):125–131

    CAS  PubMed  Google Scholar 

  177. Wang H et al (2014) Selection and characterization of a peptide specifically targeting to gastric cancer cell line SGC-7901 using phage display. Int J Pept Res Ther 20(1):87–94

    CAS  Google Scholar 

  178. Zhang J et al (2013) Targeted radiotherapy with tumor vascular homing trimeric GEBP11 peptide evaluated by multimodality imaging for gastric cancer. J Controll. Release 172(1):322–329

    CAS  Google Scholar 

  179. Su X et al (2014) Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer. Cell Biosci 4(1):7–7

    PubMed  PubMed Central  Google Scholar 

  180. Lapis K (2010) Host defense peptides and peptidomimetics as new weapons for cancer treatment. Magy Onkol 54(1):47–58

    PubMed  Google Scholar 

  181. Papo N, Shai Y (2005) Host defense peptides as new weapons in cancer treatment. Cell Mol Life Sci 62(7–8):784–790

    CAS  PubMed  Google Scholar 

  182. Smith GP, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science (New York, 1985. 228(4705): pp 1315–1317

    Google Scholar 

  183. Stefan N et al (2011) DARPins recognizing the tumor-associated antigen EpCAM selected by phage and ribosome display and engineered for multivalency. J Mol Biol 413(4):826–843

    CAS  PubMed  Google Scholar 

  184. Rivinoja A, Laakkonen P (2011) Identification of homing peptides using the in vivo phage display technology. Methods Mol Biol 683:401–415

    CAS  PubMed  Google Scholar 

  185. Kim D et al (2014) A specific STAT3-binding peptide exerts antiproliferative effects and antitumor activity by inhibiting STAT3 phosphorylation and signaling. Cancer Res 74(8):2144–2151

    CAS  PubMed  Google Scholar 

  186. Wu CH et al (2016) Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 23:8

    PubMed  PubMed Central  Google Scholar 

  187. Saw PE, Song EW (2019) Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 10(11):787–807

    PubMed  PubMed Central  Google Scholar 

  188. Guo Y et al (2014) Screening and identification of a specific peptide binding to hepatocellular carcinoma cells from a phage display peptide library. J Pept Sci 20(3):196–202

    CAS  PubMed  Google Scholar 

  189. Zhang D et al (2015) A CD44 specific peptide developed by phage display for targeting gastric cancer. Biotechnol Lett 37(11):2311–2320

    CAS  PubMed  Google Scholar 

  190. Zhang D et al (2016) Screening and identification of a phage display derived peptide that specifically binds to the CD44 protein region encoded by variable exons. J Biomol Screen 21(1):44–53

    CAS  PubMed  Google Scholar 

  191. Fan L et al (2015) A peptide derivative serves as a fibroblast growth factor 2 antagonist in human gastric cancer. Tumour Biol 36(9):7233–7241

    CAS  PubMed  Google Scholar 

  192. Kang J et al (2013) A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells. Cancer Lett 339(2):247–259

    CAS  PubMed  Google Scholar 

  193. Wang X et al (2015) Mechanism study of peptide GMBP1 and its receptor GRP78 in modulating gastric cancer MDR by iTRAQ-based proteomic analysis. BMC Cancer 15:358

    PubMed  PubMed Central  Google Scholar 

  194. Pan WR et al (2015) Antimicrobial peptide GW-H1-induced apoptosis of human gastric cancer AGS cell line is enhanced by suppression of autophagy. Mol Cell Biochem 400(1–2):77–86

    CAS  PubMed  Google Scholar 

  195. Zhi M et al (2004) Characterization of a specific phage-displayed Peptide binding to vasculature of human gastric cancer. Cancer Biol Ther 3(12):1232–1235

    CAS  PubMed  Google Scholar 

  196. Hui X et al (2008) Specific targeting of the vasculature of gastric cancer by a new tumor-homing peptide CGNSNPKSC. J Control Release 131(2):86–93

    CAS  PubMed  Google Scholar 

  197. Xin J et al (2013) In vivo gastric cancer targeting and imaging using novel symmetric cyanine dye-conjugated GX1 peptide probes. Bioconjug Chem 24(7):1134–1143

    CAS  PubMed  Google Scholar 

  198. Lei Z et al (2018) Novel peptide GX1 inhibits angiogenesis by specifically binding to transglutaminase-2 in the tumorous endothelial cells of gastric cancer. Cell Death Dis 9(6):579

    PubMed  PubMed Central  Google Scholar 

  199. Chen B et al (2009) A novel peptide (GX1) homing to gastric cancer vasculature inhibits angiogenesis and cooperates with TNF alpha in anti-tumor therapy. BMC Cell Biol 10:63

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Zhao J et al (2015) In vitro characterization of the rapid cytotoxicity of anticancer peptide HPRP-A2 through membrane destruction and intracellular mechanism against gastric cancer cell lines. PLoS ONE 10(9):e0139578

    PubMed  PubMed Central  Google Scholar 

  201. Zhao J et al (2015) Two hits are better than one: synergistic anticancer activity of alpha-helical peptides and doxorubicin/epirubicin. Oncotarget 6(3):1769–1778

    PubMed  Google Scholar 

  202. Bai F et al (2007) Inhibitory effects of a specific phage-displayed peptide on high peritoneal metastasis of gastric cancer. J Mol Med (Berl) 85(2):169–180

    CAS  Google Scholar 

  203. Hu S et al (2006) Phage display selection of peptides that inhibit metastasis ability of gastric cancer cells with high liver-metastatic potential. Biochem Biophys Res Commun 341(4):964–972

    CAS  PubMed  Google Scholar 

  204. Sahin D et al (2018) Screening and identification of peptides specifically targeted to gastric cancer cells from a Phage Display Peptide Library. Asian Pac J Cancer Prev 19(4):927–932

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Liang S et al (2006) Screening and identification of vascular-endothelial-cell-specific binding peptide in gastric cancer. J Mol Med (Berl) 84(9):764–773

    CAS  Google Scholar 

  206. An P et al (2004) Suppression of tumor growth and metastasis by a VEGFR-1 antagonizing peptide identified from a phage display library. Int J Cancer 111(2):165–173

    CAS  PubMed  Google Scholar 

  207. Fan L et al (2014) A novel FGF2 antagonist peptide P8 with potent antiproliferation activity. Tumour Biol 35(10):10571–10579

    CAS  PubMed  Google Scholar 

  208. Wang C et al (2010) Mechanism of antitumor effect of a novel bFGF binding peptide on human colon cancer cells. Cancer Sci 101(5):1212–1218

    CAS  PubMed  Google Scholar 

  209. Chen S et al (2018) MicroRNA-495-3p inhibits multidrug resistance by modulating autophagy through GRP78/mTOR axis in gastric cancer. Cell Death Dis 9(11):1070

    PubMed  PubMed Central  Google Scholar 

  210. Chou HT et al (2008) Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int J Antimicrob Agents 32(2):130–138

    CAS  PubMed  Google Scholar 

  211. Chen YL et al (2012) Novel cationic antimicrobial peptide GW-H1 induced caspase-dependent apoptosis of hepatocellular carcinoma cell lines. Peptides 36(2):257–265

    CAS  PubMed  Google Scholar 

  212. Riedl S, Zweytick D, Lohner K (2011) Membrane-active host defense peptides–challenges and perspectives for the development of novel anticancer drugs. Chem Phys Lipids 164(8):766–781

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Khodarev NN et al (2003) Tumour-endothelium interactions in co-culture: coordinated changes of gene expression profiles and phenotypic properties of endothelial cells. J Cell Sci 116(Pt 6):1013–1022

    CAS  PubMed  Google Scholar 

  214. Chi JT et al (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA 100(19):10623–10628

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Conway EM, Carmeliet P (2004) The diversity of endothelial cells: a challenge for therapeutic angiogenesis. Genome Biol 5(2):207

    PubMed  PubMed Central  Google Scholar 

  216. Zhu L et al (2010) Preclinical molecular imaging of tumor angiogenesis. Q J Nucl Med Mol Imaging 54(3):291–308

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Wang Y et al (2003) In-vivo screening and characterization of peptides specific for vasculature of gastric cancer. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 19(5):469–472

    CAS  PubMed  Google Scholar 

  218. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    CAS  PubMed  Google Scholar 

  219. Fujimura T et al (2000) Subtotal peritonectomy with chemohyperthermic peritoneal perfusion for peritonitis carcinomatosa in gastrointestinal cancer. Oncol Rep 7(4):809–814

    CAS  PubMed  Google Scholar 

  220. Koppe MJ et al (2006) Peritoneal carcinomatosis of colorectal origin: incidence and current treatment strategies. Annal Surg 243(2):212–222

    Google Scholar 

  221. Sugahara KN et al (2015) A tumor-penetrating peptide enhances circulation-independent targeting of peritoneal carcinomatosis. J Controll Release 212:59–69

    CAS  Google Scholar 

  222. Sugarbaker PH (2005) Cytoreductive surgery and perioperative intraperitoneal chemotherapy: a new standard of care for appendiceal mucinous tumors with peritoneal dissemination. Clin Colon Rectal Surg 18(3):204–214

    PubMed  PubMed Central  Google Scholar 

  223. Bai F et al (2007) Inhibitory effects of a specific phage-displayed peptide on high peritoneal metastasis of gastric cancer. J Mol Med 85(2):169–180

    CAS  PubMed  Google Scholar 

  224. Partin AW et al (1989) Fourier analysis of cell motility: correlation of motility with metastatic potential. Proc Natl Acad Sci USA 86(4):1254–1258

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Gunji Y et al (2002) Analysis of experimental liver metastasis from tumors inoculated in the mouse stomach cavity. Surg Today 32:142–147

    PubMed  Google Scholar 

  226. Bao L et al (1996) Thymosin β15: a novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nat Med 2(12):1322–1328

    CAS  PubMed  Google Scholar 

  227. Khodarev NN et al (2003) Tumour-endothelium interactions in co-culture: coordinated changes of gene expression profiles and phenotypic properties of endothelial cells. J Cell Sci 116(6):1013

    CAS  PubMed  Google Scholar 

  228. Szot C et al (2013) In vitro angiogenesis induced by tumor-endothelial cell co-culture in Bilayered, Collagen I hydrogel bioengineered tumors. Tissue Eng Part C Methods 19(11):864–874

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3(2):65–71

    CAS  PubMed  Google Scholar 

  230. Vucenik I et al (2004) Anti-angiogenic activity of inositol hexaphosphate (IP 6). Carcinogenesis 25(11):2115–2123

    CAS  PubMed  Google Scholar 

  231. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    CAS  PubMed  Google Scholar 

  232. Rafii S, Avecilla ST, Jin DK (2003) Tumor vasculature address book: identification of stage-specific tumor vessel zip codes by phage display. Cancer Cell 4(5):331–333

    CAS  PubMed  Google Scholar 

  233. Pasqualini R et al (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Croix BS et al (2000) Genes expressed in human tumor endothelium. Science 289(5482):1197

    Google Scholar 

  235. Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2(2):83–90

    PubMed  Google Scholar 

  236. Morikawa S et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3):985–1000

    PubMed  PubMed Central  Google Scholar 

  237. Zurita AJ, Arap W, Pasqualini R (2003) Mapping tumor vascular diversity by screening phage display libraries. J Controll Release 91(1):183–186

    CAS  Google Scholar 

  238. Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol-Cell Physiol 282(5):C947–C970

    CAS  PubMed  Google Scholar 

  239. Luttun A et al (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8):831–840

    CAS  PubMed  Google Scholar 

  240. Carmeliet P et al (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5):575–583

    CAS  PubMed  Google Scholar 

  241. Marchand GS et al (2002) Blockade of in vivo VEGF-mediated angiogenesis by antisense gene therapy: role of Flk-1 and Flt-1 receptors. Am J Physiol Heart Circ Physiol 282(1):H194–H204

    CAS  PubMed  Google Scholar 

  242. Stefanik DF et al (2001) Monoclonal antibodies to vascular endothelial growth factor (VEGF) and the VEGF receptor, FLT-1, inhibit the growth of C6 glioma in a mouse xenograft. J Neuro-oncol 55(2):91–100

    CAS  Google Scholar 

  243. Asai T et al (2002) Suppression of tumor growth by novel peptides homing to tumor-derived new blood vessels. FEBS Lett 510(3):206–210

    CAS  PubMed  Google Scholar 

  244. Tan DC et al (2001) A small peptide derived from Flt-1 (VEGFR‐1) functions as an angiogenic inhibitor. FEBS Lett 494(3):150–156

    CAS  PubMed  Google Scholar 

  245. Tian X et al (2001) Vascular endothelial growth factor: acting as an autocrine growth factor for human gastric adenocarcinoma cell MGC803. Biochem Biophys Res Commun 286(3):505–512

    CAS  PubMed  Google Scholar 

  246. Zhang H et al (2002) Expression of vascular endothelial growth factor and its receptors KDR and Flt-1 in gastric cancer cells. World J Gastroenterol 8(6):994

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Soker S et al (2001) Vascular endothelial growth factor-mediated autocrine stimulation of prostate tumor cells coincides with progression to a malignant phenotype. Am J Pathol 159(2):651–659

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Lacal PM et al (2000) Human melanoma cells secrete and respond to placenta growth factor and vascular endothelial growth factor. J Investig Dermatol 115(6):1000–1007

    CAS  PubMed  Google Scholar 

  249. Bellamy WT (2001) Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol 28(6):551–559

    CAS  PubMed  Google Scholar 

  250. Marschall ZV et al (2000) De novo expression of vascular endothelial growth factor in human pancreatic cancer: evidence for an autocrine mitogenic loop. Gastroenterology 119(5):1358–1372

    Google Scholar 

  251. Wang H et al (2014) Selection and characterization of a peptide specifically targeting to gastric cancer cell line SGC-7901 using phage display. Int J Peptide Res Ther 20:87–94

    CAS  Google Scholar 

  252. Cheng C-C et al (2013) Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int J Nanomed 8:1385–1391

    Google Scholar 

  253. Zhao H et al (2013) 99mTc-MDP uptake in implantation metastasis of gastric cancer: the additional value of SPECT/CT. Clin Nuclear Med 38(10):838–840

    Google Scholar 

  254. Zhang J et al (2013) Targeted radiotherapy with tumor vascular homing trimeric GEBP11 peptide evaluated by multimodality imaging for gastric cancer. J Control Release 172(1):322–329

    CAS  PubMed  Google Scholar 

  255. Zhu H et al (2017) (125)I-F56 peptide as radioanalysis agent targeting VEGFR1 in mice xenografted with human gastric tumor. ACS Med Chem Lett 8(2):266–269

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Zhu H et al (2015) Radiolabeling and evaluation of (64)Cu-DOTA-F56 peptide targeting vascular endothelial growth factor receptor 1 in the molecular imaging of gastric cancer. Am J Cancer Res 5(11):3301–3310

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Hui X et al (2008) Specific targeting of the vasculature of gastric cancer by a new tumor-homing peptide CGNSNPKSC. J Controll Release 131:86–93

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Hormati.

Ethics declarations

Conflict of interest

There is no conflict of interest for authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadpour, S., Khodadust, F., Hormati, A. et al. Pivotal Role of Peptides in Gastric Carcinoma: Diagnosis and Therapy. Int J Pept Res Ther 27, 503–525 (2021). https://doi.org/10.1007/s10989-020-10104-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-020-10104-9

Keywords

Navigation