Skip to main content
Log in

Modulation of Aggregation Propensity of Aβ38 by Site Specific Multiple Proline Substitution

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Proline with its unique geometrical feature generates turn in the peptide backbone. Therefore, aggregation potential of Aβ38 can be modulated by insertion of proline at specific positions. Although site specific proline mutation is reported, effect of multiple proline substitution on aggregation potential is still not demonstrated. Therefore, Aβ38, a single proline substituted variant, V18P-Aβ38, a double proline substituted variant, V18P-I31P-Aβ38 and a triple proline substituted version, V12P-V18P-I31P-Aβ38 were synthesized and their aggregation potential were studied. The proline mutants found to have higher solubility and slower aggregation kinetics. The double mutated version was relatively less aggregation prone than its single mutated version. Such analogues can be useful for designing new β sheet breaker peptides, studying the mechanism of aggregation and structural analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Camus MS, Santos SD, Chandravarkar A, Mandal B, Schmid AW, Tuchscherer G, Mutter M, Lashuel HA (2008) Switch-peptides: Design and characterization of controllable super amyloid forming host guest peptides as tool for identifying anti amyloid agents. ChemBioChem 9:2104–2112

    Article  PubMed  CAS  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  • Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Prot 2(12):3247–3256

    Article  CAS  Google Scholar 

  • Dolphin GT, Dumy P, Garcia J (2006) Control of amyloid β-peptide protofibril formation by a designed template assembly. Angew Chem Int Ed 45(17):2699–2702

    Article  CAS  Google Scholar 

  • Hamley IW, Nutt DR, Brown GD, Miravet JF, Escuder B, Rodriguez-Llansola F (2010) Influence of the solvent on the self assembly of a modified amyloid beta peptide fragment. II. NMR and computer simulation investigation. J Phys Chem B. 114(2):940–951

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  • Jaroch S (2007) A soluble amyloid fibril segment to study aggregate formation. Chem med chem. 2:47–49

    PubMed  CAS  Google Scholar 

  • Lazo ND, Grant MA, Condron MC, Rigby AC, Teplow DB (2005) On the nucleation of amyloid β-protein monomer folding. Protein Sci 14(6):1581–1596

    Article  PubMed  CAS  Google Scholar 

  • Morimoto A, Irie K, Murakami K, Masuda Y, Ohigashi H, Nagao M, Fakuda H, Shimizu T, Shirasawa T (2004) Analysis of the secondary structure of β-amyloid (Aβ42) fibrils by systematic proline replacement. J Biol Chem 279(50):52781–52788

    Article  PubMed  CAS  Google Scholar 

  • Naldi M, Fiori J, Pistolozzi M, Drake AF, Bertucci C, Wu R, Mlynarczyk K, Filipek S, Simone AD, Andrisano V (2012) Amyloid β-peptide 25-35 self assembly and its inhibition: A model undecapeptide system to gain atomistic and secondary structure details of Alzheimer’s disease and treatment. Acs Chem Neurosci 3(11):952–962

    Article  PubMed  CAS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Nat. Acad. Sci. USA 99(26):16742–16747

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins and therapy. Physiol Rev 81(2):741–766

    PubMed  CAS  Google Scholar 

  • Soto C, Sigurdsson EM, Morelli L, Kumar RA, Castano EM, Frangione B (1998) β sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer’s therapy. Nat Med 4(7):822–826

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Mihara H (2008) Peptide and protein mimetics inhibiting amyloid β aggregation. Acc Chem Res 41(10):1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Tickler AK, Barrow CJ, Wade JD (2001) Improved preparation of amyloid-β peptides using DBU as N α -Fmoc deprotection reagent. J Pep Sci 7(9):488–494

    Article  CAS  Google Scholar 

  • Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14(1):96–103

    Article  PubMed  CAS  Google Scholar 

  • Williams AD, Portelius E, Kheterpal I, Guo J, Cook KD, Xu Y, Wetzel R (2004) Mapping Aβ amyloid fibril secondary structure using scanning proline mutagenesis. J Mol Bio 335:833–842

    Article  CAS  Google Scholar 

  • Wood SJ, Wetzel R, Martin JD, Hurle MR (1995) Prolines and amyloidogenecity in fragments of the Alzheimer’s peptide β/A4 Biochemistry 34: 724-730.

    Google Scholar 

  • Zarandi M, Soos K, Fulop L, Bozso Z, Datki Z, Toth GK, Penke B (2007) Synthesis of Aβ [1-42] and its derivatives with improved efficiency. J Pep Sci 13(2):94–99

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to CIF, IITG for TEM studies, Mr. Sameer Hussain and Prof. P. K. Iyer for their help in birefringence studies, Mr. Mohitosh Dey and Prof. S. S. Ghosh for their help in CD studies, reviewers for constructive suggestions and BRNS DAE (2008/20/37/6/BRNS) for financial support.

Conflict of interest

Nadimpally Krishna Chaitanya, Ashim Paul, Abhijit Saha and Bhubaneswar Mandal declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhubaneswar Mandal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaitanya, N.K., Paul, A., Saha, A. et al. Modulation of Aggregation Propensity of Aβ38 by Site Specific Multiple Proline Substitution. Int J Pept Res Ther 19, 365–371 (2013). https://doi.org/10.1007/s10989-013-9360-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-013-9360-1

Keywords

Navigation