Skip to main content
Log in

Side Chain Anchoring of Tryptophan to Solid Supports Using a Dihydropyranyl Handle: Synthesis of Brevianamide F

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The multifunctional character of tryptophan has made it a target for the development of new molecules with therapeutic applications. In this sense the design of alternative solid phase routes would allow the widening of synthetic possibilities to access these molecules through conventional or combinatorial strategies. The present work describes a new strategy for side-chain anchoring of tryptophan to dihydropyranyl-functionalized polystyrene resins and its application to the synthesis of the natural diketopiperazine Brevianamide F. For this study a new handle (4-[(3,4-dihydro-2H-pyran-2-yl)methoxy]benzoic acid) was prepared in order to functionalize aminomethyl or methylbenzhydrylamine resins. A preliminary study in solution using Fmoc-Trp-OR (R = Allyl or Me) and suitable resin models showed that the formation of an hemiaminal linkage with the indole system could be brought about by either conventional or microwave heating in 1,2-dichloroethane and in the presence of pyridine p-toluenesulfonate in yields of 70–95% practically without the formation of sub-products. On the other hand the amino acid could be liberated from the resin at room temperature in yields of up to 90% using trifluoroacetic acid in dichloromethane in the presence of 1,3-dimethoxybenzene as a cation scavenger. The conditions found in solution for the reversible formation of the hemiaminal were only reproducible in solid-phase work using conventional heating. These conditions were used in the synthesis of Brevianamide F, furnishing the diketopiperazine in an overall yield of 56%. These results demonstrate the potential of this strategy for the preparation of new molecules based upon tryptophan as a synthetic precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1

Similar content being viewed by others

References

  • Anderson MO, Shelat AA, Guy RK (2005) Solid-phase approach to the phallotoxins: total synthesis of [Ala7]-phalloidin. J Org Chem 70:4578–4584

    Article  PubMed  CAS  Google Scholar 

  • Ashnagar A, Bailey PD, Cochrane PJ, Mills TJ, Price RA (2007) Unusual rearrangements and cyclizations involving polycyclic indolic systems. Arkivoc 11:161–171

    Google Scholar 

  • Basso A, Ernst B (2001) Solid-phase synthesis of hydroxyproline-based cyclic hexapeptides. Tetrahedron Lett 42:6687–6690

    Article  CAS  Google Scholar 

  • Bernhardt A, Drewello M, Schutkowski M (1997) The solid-phase synthesis of side-chain-phosphorylated peptide-4-nitroanilides. J Pept Res 50:143–152

    Article  PubMed  CAS  Google Scholar 

  • Black KM, Clark-Lewis I, Wallace CJA (2001) Conserved tryptophan in cytochrome c: importance of the unique side-chain features of the indole moiety. Biochem J 359:715–720

    Article  PubMed  CAS  Google Scholar 

  • Caballero E, Avendaño C, Menéndez JC (2003) Brief total synthesis of the cell cycle inhibitor tryprostatin B and related preparation of its alanine analogue. J Org Chem 68:6944–6951

    Article  PubMed  CAS  Google Scholar 

  • Cabrele C, Langer M, Beck-Sickinger AG (1999) Amino acid side chain attachment approach and its application to the synthesis of tyrosine-containing cyclic peptides. J Org Chem 64:4353–4361

    Article  CAS  Google Scholar 

  • Chang J, Dong C, Guo X et al (2005) A solid-phase approach to novel purine and nucleoside analogs. Bioorg Med Chem 13:4760–4766

    Article  PubMed  CAS  Google Scholar 

  • Gordon EM, Kerwin JF (1998) Combinatorial chemistry and molecular diversity in drug discovery. Wiley-Liss, New York

    Google Scholar 

  • Graham KAN, Wang Q, Eisenhut M, Haberkorn U, Mier W (2002) A general method for functionalising both the C- and N-terminals of Tyr3-octreotate. Tetrahedron Lett 43:5021–5024

    Article  CAS  Google Scholar 

  • Gu W, Silverman RB (2003) Solid-phase total synthesis of scytalidamide A. J Org Chem 68:8774–8779

    Article  PubMed  CAS  Google Scholar 

  • Guibe F (1998) Allylic protecting groups and their use in a complex environment. Part II: allylic protecting groups and their removal through catalytic palladium pi-allyl methodology. Tetrahedron 54:2967–3042

    Article  CAS  Google Scholar 

  • Jhaumeer-Laulloo S, Khodabocus A, Jugoo A, Jheengut D, Sobha S (2003) Synthesis of diketopiperazines containing prolinyl unit—cyclo(l-prolinyl-l-leucine), cyclo(l-prolinyl-l-isoleucine) and cyclo(l-tryptophyl-l-proline). J Indian Chem Soc 80:765–768

    CAS  Google Scholar 

  • Kates SA, Sole NA, Johnson CR, Hudson D, Barany G, Albericio F (1993) A novel, convenient, three-dimensional orthogonal strategy for solid-phase synthesis of cyclic peptides. Tetrahedron Lett 34:1549–1552

    Article  CAS  Google Scholar 

  • Kitade M, Tanaka H, Oe S, Iwashima M, Iguchi K, Takahashi T (2006) Solid-phase synthesis and biological activity of a combinatorial cross-conjugated dienone library. Chem Eur J 12:1368–1376

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama W, Kitahara T (2001) Synthesis of apicidin. Heterocycles 55:1–4

    Article  CAS  Google Scholar 

  • Liu S, Gu W, Lo D et al (2005) N-Methylsansalvamide and peptide analogues. Potent new antitumor agents. J Med Chem 48:3630–3638

    Article  PubMed  CAS  Google Scholar 

  • Ma JC, Dougherty DA (1997) The cation-π interaction. Chem Rev 97:1303–1324

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Sonveaux E (1989) The 9-fluorenylmethyloxycarbonyl group as a 5′-OH protection in oligonucleotide synthesis. Biopolymers 28:965–973

    Article  PubMed  CAS  Google Scholar 

  • Mant CT, Kovacs JM, Kim HM, Pollock DD, Hodges RS (2009) Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid chromatography of model peptides: comparison with other hydrophilicity/hydrophobicity scales. Biopolymers 92:573–595

    Article  PubMed  CAS  Google Scholar 

  • Mehdi RBA, Shaaban KA, Rebai IK, Smaoui S, Bejar S, Mellouli L (2009) Five naturally bioactive molecules including two rhamnopyranoside derivatives isolated from the Streptomyces sp. strain TN58. Nat Prod Res B 23:1095–1107

    Article  Google Scholar 

  • Milne PJ, Kilian G (2010) The properties, formation, and biological activity of 2,5-diketopiperazines. In: Mander L, Liu HW (eds) Comprehensive natural products II: chemistry and biology, vol 5. Elsevier Science, Amsterdam, pp 657–698

    Chapter  Google Scholar 

  • Nam N-H, Sardari S, Parang K (2003) Reactions of solid-supported reagents and solid supports with alcohols and phenols through their hydroxyl functional group. J Comb Chem 5:479–546

    Article  PubMed  CAS  Google Scholar 

  • Nugiel DA, Cornelius LAM, Corbett JW (1997) Facile preparation of 2,6-disubstituted purines using solid-phase chemistry. J Org Chem 62:201–203

    Article  PubMed  CAS  Google Scholar 

  • Richard DJ, Schiavi B, Joullie MM (2004) Synthetic studies of roquefortine C: synthesis of isoroquefortine C and a heterocycle. Proc Natl Acad Sci USA 101:11971–11976

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues de Sa Alves F, Barreiro EJ, Fraga CAM (2009) From nature to drug discovery: the indole scaffold as a ‘Privileged Structure’. Mini Rev Med Chem 9:782–793

    Article  CAS  Google Scholar 

  • Ruiz-Sanchis P, Savina Svetlana A, Albericio F, Alvarez M (2011) Structure, bioactivity and synthesis of natural products with hexahydropyrrolo[2,3-b]indole. Chemistry 17:1388–1408

    Article  PubMed  CAS  Google Scholar 

  • Samanta U, Pal D, Chakrabarti P (1999) Packing of aromatic rings against tryptophan residues in proteins. Acta Crystallogr D D55:1421–1427

    Article  CAS  Google Scholar 

  • Samanta U, Pal D, Chakrabarti P (2000) Environment of tryptophan side chains in proteins. Proteins Struct Funct Genet 38:288–300

    Article  PubMed  CAS  Google Scholar 

  • Sawyer TK (1997) Peptidomimetic and nonpeptide drug discovery: impact structure-based drug design. In: Veerapandian P (ed) Structure based drug design: disease, targets, techniques and development. Marcel Dekker, New York, pp 559–634

    Google Scholar 

  • Smith AL, Stevenson GI, Swain CJ, Castro JL (1998) Traceless solid phase synthesis of 2,3-disubstituted indoles. Tetrahedron Lett 39:8317–8320

    Article  CAS  Google Scholar 

  • Spatola AF, Romanovskis P (2000) Head-to-tail cyclic peptides and cyclic peptide libraries. In: Greenberg A, Breneman CM, Liebman JF (eds) The amide linkage: selected structural aspects in chemistry, biochemistry and materials science. Wiley, New York, pp 519–564

    Google Scholar 

  • Stathopoulos P, Papas S, Tsikaris V (2006) C-terminal N-alkylated peptide amides resulting from the linker decomposition of the Rink amide resin. J Pept Sci 12:227–232

    Article  PubMed  CAS  Google Scholar 

  • Steyn PS (1973) Structure of five dioxopiperazines from Aspergillus ustus. Tetrahedron 29:107–120

    Article  CAS  Google Scholar 

  • Tanaka H, Ishida T, Matoba N, Tsukamoto H, Yamada H, Takahashi T (2006) Efficient polymer-assisted strategy for the deprotection of protected oligosaccharides. Angew Chem Int Ed 45:6349–6352

    Article  CAS  Google Scholar 

  • Thompson LA, Ellman JA (1994) Straightforward and general method for coupling alcohols to solid supports. Tetrahedron Lett 35:9333–9336

    Article  CAS  Google Scholar 

  • Trzeciak A, Bannwarth W (1992) Synthesis of head-to-tail cyclized peptides on solid support by Fmoc [9-fluorenylmethoxycarbonyl] chemistry. Tetrahedron Lett 33:4557–4560

    Article  CAS  Google Scholar 

  • Villorbina G, Canals D, Carde L et al (2007) Solid-phase synthesis of a combinatorial library of dihydroceramide analogues and its activity in human alveolar epithelial cells. Bioorg Med Chem 15:50–62

    Article  PubMed  CAS  Google Scholar 

  • Wallace OB (1997) Solid phase synthesis of ketones from esters. Tetrahedron Lett 38:4939–4942

    Article  CAS  Google Scholar 

  • Wang X, Choe Y, Craik CS, Ellman JA (2002) Design and synthesis of novel inhibitors of gelatinase B. Bioorg Med Chem Lett 12:2201–2204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful for financial support from Ministerio de Ciencia e Innovación (CTQ2006-12460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Nicolás.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-García, C., Díaz, M., Blasi, D. et al. Side Chain Anchoring of Tryptophan to Solid Supports Using a Dihydropyranyl Handle: Synthesis of Brevianamide F. Int J Pept Res Ther 18, 7–19 (2012). https://doi.org/10.1007/s10989-011-9274-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-011-9274-8

Keywords

Navigation