Skip to main content
Log in

Multiseasonal discrete-time risk model revisited

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

In this work, we set up the distribution function of \(\mathcal{M}:={\mathrm{sup}}_{n\ge 1}{\sum }_{i=1}^{n}\left({X}_{i}-1\right),\) where the random walk \({\sum }_{i=1}^{n}{X}_{i},n\in {\mathbb{N}},\) is generated by N periodically occurring distributions, and the integer-valued and nonnegative random variablesX1,X2, . . . are independent. The considered random walk generates a so-called multiseasonal discrete-time risk model, and a known distribution of random variable M enables us to calculate the ultimate time ruin or survival probability. Verifying obtained theoretical statements, we demonstrate several computational examples for survival probability P(M < u) when N = 2, 3, or 10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Asmussen and T. Rolski, Risk theory in a periodic environment: The Cramér–Lundberg approximation and Lundberg’s inequality, Math. Oper. Res., 19(2):410–433, 1994, https://doi.org/https://doi.org/10.1287/moor.19.2.410.

    Article  MathSciNet  Google Scholar 

  2. K. Blaževičius, E. Bieliauskienė, and J. Šiaulys, Finite-time ruin probability in the inhomogeneous claim case, Lith. Math. J., 50(3):260–270, 2010, https://doi.org/https://doi.org/10.1007/s10986-010-9084-2.

    Article  MathSciNet  Google Scholar 

  3. J. Damarackas and J. Šiaulys, Bi-seasonal discrete time risk model, Appl. Math. Comput., 247:930–940, 2014, https://doi.org/https://doi.org/10.1016/j.amc.2014.09.040.

    Article  MathSciNet  Google Scholar 

  4. F.E. De Vylder, La formule de Picard et Lefèvre pour la probabilité de ruine en temps fini, Bulletin Français d’Actuariat, 1(2):31–40, 1997.

    Google Scholar 

  5. F.E. De Vylder, Numerical finite-time ruin probabilities by the Picard–Lefèvre formula, Scand. Actuarial J., 1999(2): 97–105, 1999, https://doi.org/https://doi.org/10.1080/03461239950132598.

    Article  Google Scholar 

  6. F. De Vylder and M.J. Goovaerts, Recursive calculation of finite-time ruin probabilities, Insur. Math. Econ., 7(1): 1–7, 1988, https://doi.org/https://doi.org/10.1016/0167-6687(88)90089-3.

    Article  MathSciNet  Google Scholar 

  7. D.C.E. Dickson, Insurance Risk and Ruin, Cambridge Univ. Press, Cambridge, 2005.

    Book  Google Scholar 

  8. D.C.M. Dickson, On numerical evaluation of finite time survival probabilities, Br. Actuar. J., 5(3):575–584, 1999, https://doi.org/https://doi.org/10.1017/S135732170000057X.

    Article  Google Scholar 

  9. D.C.M. Dickson and H.R.Waters, Recursive calculation of survival probabilities, ASTIN Bull., 21(2):199–221, 1991, https://doi.org/https://doi.org/10.2143/AST.21.2.2005364.

    Article  Google Scholar 

  10. P. Erdős and S.J. Taylor, Some problems concerning the structure of random walk paths, Acta Math. Acad. Sci. Hung., 11(1):137–162, 1963, https://doi.org/https://doi.org/10.1007/BF02020631.

    Article  MathSciNet  Google Scholar 

  11. H.U. Gerber, Mathematical fun with ruin theory, Insur. Math. Econ., 7(1):15–23, 1988, https://doi.org/https://doi.org/10.1016/0167-6687(88)90091-1.

    Article  MathSciNet  Google Scholar 

  12. H.U. Gerber, Mathematical fun with the compound binomial process, ASTIN Bull., 18(2):161–168, 1988, https://doi.org/https://doi.org/10.2143/AST.18.2.2014949.

    Article  Google Scholar 

  13. A. Grigutis and J. Jankauskas, On 2×2 determinants originating from survival probabilities in homogeneous discrete time risk model, Results Math., 77:204, 2022, https://doi.org/https://doi.org/10.1007/s00025-022-01736-y.

    Article  MathSciNet  Google Scholar 

  14. A. Grigutis, A. Korvel, and J. Šiaulys, Ruin probability in the three-seasonal discrete-time risk model, Mod. Stoch., Theory Appl., 2(4):421–441, 2015, https://doi.org/10.15559/15-VMSTA45.

  15. P.K. Jordanova and M. Stehlík, On multivariate modifications of Cramer–Lundberg risk model with constant intensities, Stochastic Anal. Appl., 36(5):858–882, 2018, https://doi.org/https://doi.org/10.1080/07362994.2018.1471403.

    Article  MathSciNet  Google Scholar 

  16. D.G. Kendall, The genealogy of genealogy branching processes before (and after) 1873, Bull. Lond.Math. Soc., 7(3): 225–253, 1975, https://doi.org/https://doi.org/10.1112/blms/7.3.225.

    Article  MathSciNet  Google Scholar 

  17. Cl. Lefèvre and S. Loisel, On finite-time ruin probabilities for classical risk models, Scand. Actuar. J., 2008(1):41–60, 2008, https://doi.org/10.1080/03461230701766882.

  18. Cl. Lefèvre and Ph. Picard, A nonhomogeneous risk model for insurance, Comput. Math. Appl., 51(2):325–334, 2006, https://doi.org/10.1016/j.camwa.2005.11.005.

  19. S. Li, Y. Lu, and J. Garrido, A review of discrete-time risk models, RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 103(2):321–337, 2009, https://doi.org/10.1007/BF03191910.

  20. F. Lundberg, I. Approximerad framställning af sannolikhetsfunktionen; II. Återförsäkring af kollektivrisker, PhD thesis, Uppsala University, 1903 (in Swedish).

  21. V.Y. Pan, Howbad are Vandermonde matrices?, SIAM J.Matrix Anal. Appl., 37(2):676–694, 2016, https://doi.org/https://doi.org/10.1137/15M1030170.

    Article  MathSciNet  Google Scholar 

  22. K. Pearson, The problem of the random walk, Nature, 72:294, 1905, https://doi.org/https://doi.org/10.1038/072294b0.

    Article  Google Scholar 

  23. Ph. Picard and Cl. Lefèvre, The probability of ruin in finite time with discrete claim size distribution, Scand. Actuar. J., 1997(1):58–69, 1997, https://doi.org/10.1080/03461238.1997.10413978.

  24. Ph. Picard and Cl. Lefèvre, Probabilité de ruine éventuelle dans un modèle de risque à temps discret, J. Appl. Probab., 40(3):543–556, 2003, https://doi.org/10.1239/jap/1059060887.

  25. L. Rincón and D.J. Santana, Ruin probability for finite negative binomial mixture claims via recurrence sequences, Commun. Stat., Theory Methods, 2022, https://doi.org/10.1080/03610926.2022.2087091.

  26. S.M. Ross, A First Course in Probability, 8th ed., Prentice Hall, Upper Saddle River, NJ, 2010.

    Google Scholar 

  27. W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.

    Google Scholar 

  28. D.J. Santana and L. Rincón, Ruin probabilities as functions of the roots of a polynomial, Mod. Stoch., Theory Appl., 10(3):247–266, 2023, https://doi.org/10.15559/23-VMSTA226.

  29. H. Sedrakyan and N. Sedrakyan, The Cauchy–Bunyakovsky–Schwarz inequality, in Algebraic Inequalities, Springer, Cham, 2018, pp. 45–57, https://doi.org/10.1007/978-3-319-77836-5_4.

  30. E.S.W. Shiu, Calculation of the probability of eventual ruin by Beekman’s convolution series, Insur. Math. Econ., 7(1):41–47, 1988, https://doi.org/https://doi.org/10.1016/0167-6687(88)90095-9.

    Article  MathSciNet  Google Scholar 

  31. E.S.W. Shiu, The probability of eventual ruin in the compound binomial model, ASTIN Bull., 19(2):179–190, 1989, https://doi.org/https://doi.org/10.2143/AST.19.2.2014907.

    Article  Google Scholar 

  32. E. Sparre Andersen, On the collective theory of risk in case of contagion between the claims, in Transactions of XVth International Congress of Actuaries, Vol. 2, Actuarial Society of America, New York, 1957, pp. 219–227.

  33. M. Stehlík, Ch. Helperstorfer, P. Hermann, J. Šupina, L.M. Grilo, J.P. Maidana, F. Fuders, and S. Stehlíková, Financial and risk modelling with semicontinuous covariances, Inf. Sci., 394–395:246–272, 2017, https://doi.org/https://doi.org/10.1016/j.ins.2017.02.002.

    Article  Google Scholar 

  34. I. Tishby, O. Biham, and E. Katzav, The distribution of first hitting times of random walks on directed Erdős–Rényi networks, J. Stat. Mech. Theory Exp., 2017(4):043402, 2017, https://doi.org/https://doi.org/10.1088/1742-5468/aa657e.

    Article  Google Scholar 

  35. S. Wang and Y. Gao, Precise large deviations for aggregate claims of a compound renewal risk model with arbitrary dependence between claim sizes and waiting times, Lith. Math. J., 62(4):542–552, 2022, https://doi.org/https://doi.org/10.1007/s10986-022-09581-w.

    Article  MathSciNet  Google Scholar 

  36. H. Yang and L. Zhang, Ruin problems for a discrete time risk model with random interest rate, Math. Oper. Res., 63(2):287–299, 2006, https://doi.org/https://doi.org/10.1007/s00186-005-0025-5.

    Article  MathSciNet  Google Scholar 

  37. Y. Yang, X. Wang, and Z. Zhang, Finite-time ruin probability of a perturbed risk model with dependent main and delayed claims, Nonlinear Anal.Model. Control, 26(5):801–820, 2021, https://doi.org/10.15388/namc.2021.26.23963.

  38. A. Zhang, S. Liu, and Y. Yang, Asymptotics for ultimate ruin probability in a by-claim risk model, Nonlinear Anal. Model. Control, 26(2):259–270, 2021, https://doi.org/10.15388/namc.2021.26.20948.

  39. Mathematica 13.3,Wolfram Research, Champaign, IL, 2023, https://www.wolfram.com/mathematica.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrius Grigutis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigutis, A., Jankauskas, J. & Šiaulys, J. Multiseasonal discrete-time risk model revisited. Lith Math J 63, 466–486 (2023). https://doi.org/10.1007/s10986-023-09613-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-023-09613-z

MSC

Keywords

Navigation