Skip to main content
Log in

Exact tail asymptotics of the supremum of strongly dependent Gaussian processes over a random interval

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let \( \mathcal{T} \) be a positive random variable independent of a real-valued stochastic process \( \left\{ {X(t),t\geqslant 0} \right\} \). In this paper, we investigate the asymptotic behavior of \( \mathrm{P}\left( {{\sup_{{t\in \left[ {0,\mathcal{T}} \right]}}}X(t)>u} \right) \) as u→∞ assuming that X is a strongly dependent stationary Gaussian process and \( \mathcal{T} \) has a regularly varying survival function at infinity with index λ ∈ [0, 1). Under asymptotic restrictions on the correlation function of the process, we show that \( \mathrm{P}\left( {{\sup_{{t\in \left[ {0,\mathcal{T}} \right]}}}X(t)>u} \right)={c^{\lambda }}\mathrm{P}\left( {\mathcal{T}>m(u)} \right)\left( {1+o(1)} \right) \) with some positive finite constant c and function m(·) defined in terms of the local behavior of the correlation function and the standard Gaussian distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Adler, An Introduction to Continuity, Extrema and Related Topics for General Gaussian Processes, IMS Lect. Notes, Monogr. Ser., Vol. 12, Institute of Mathematical Statistics, Hayward, CA, 1990.

    MATH  Google Scholar 

  2. J.M.P. Albin and H. Choi, A new proof of an old result by Pickands, Electron. Commun. Probab., 15:339–345, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Arendarczyk and K. Dębicki, Asymptotics of supremum distribution of a Gaussian process over a Weibullian time, Bernoulli, 17(1):194–210, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Arendarczyk and K. Dębicki, Exact asymptotics of supremum of a stationary Gaussian process over a random interval, Stat. Probab. Lett., 82(3):645–652, 2011.

    Article  Google Scholar 

  5. M.S. Berman, Sojourns and Extremes of Stochastic Processes, Wadsworth & Brooks/Cole, Boston, 1992.

    MATH  Google Scholar 

  6. N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation, Encycl. Math. Appl., Vol. 27, Cambridge Univ. Press, Cambridge, 1989.

    MATH  Google Scholar 

  7. K. Dębicki and P. Kisowski, A note on upper estimates for Pickands constants, Stat. Probab. Lett., 78(14):2046–2051, 2008.

    Article  MATH  Google Scholar 

  8. K. Dębicki and M. Uitert, Large buffer asymptotics for generalized processor sharing queues with Gaussian inputs, Queueing Syst., 54(2):111–120, 2006.

    Article  MathSciNet  Google Scholar 

  9. K. Dębicki, B. Zwart, and S. Borst, The supremum of a Gaussian process over a random interval, Stat. Probab. Lett., 68(3):221–234, 2004.

    Article  MATH  Google Scholar 

  10. K. Dębicki, Ruin probability for Gaussian integrated processes, Stoch. Process. Appl., 98(1):151–174, 2002.

    Article  MATH  Google Scholar 

  11. K. Dębicki, Z. Michna, and T. Rolski, Simulation of the asymptotic constant in some fluid models, Stoch. Models, 19(3):407–423, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Dębicki and K. Tabiś, Extremes of the time-average of stationary Gaussian processes, Stoch. Process. Appl., 121(9):2049–2063, 2011.

    Article  MATH  Google Scholar 

  13. A.B. Dieker, Extremes of Gaussian processes over an infinite horizon, Stoch. Process. Appl., 115(2):207–248, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Hashorva and J. Hüsler, Extremes of Gaussian processes with maximal variance near the boundary points, Methodol. Comput. Appl. Probab., 2(3):255–269, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Hashorva and Z. Weng, Limit laws for extremes of dependent stationary Gaussian arrays, Stat. Probab. Lett., 83(1):320–330, 2013.

    Article  MATH  Google Scholar 

  16. H.C. Ho and W.P. McCormick, Asymptotic distribution of sum and maximum for Gaussian processes, J. Appl. Probab., 36(4):1031–1044, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  17. Z. Kabluchko, Extremes of independent Gaussian processes, Extremes, 14(3):285–310, 2011.

    Article  MathSciNet  Google Scholar 

  18. D.G. Konstantinides, V.I. Piterbarg, and S. Stamatovic, Gnedenko-type limit theorems for cyclostationary χ 2-processes, Lith. Math. J., 44(2):157–167, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  19. A.V. Kudrov and V.I. Piterbarg, On maxima of partial samples in Gaussian sequences with pseudo-stationary trends, Lith. Math. J., 47(1):48–56, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  20. M.R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer Ser. Stat., Vol. 11, Springer-Verlag, New York, Heidelberg, Berlin, 1983.

    Book  MATH  Google Scholar 

  21. W.V. Li and Q.M. Shao, Gaussian processes: Inequalities, small ball probabilities and applications, in C.R. Rao and D. Shanbhad (Eds.), Stochastic Processes: Theory and Methods, Handb. Stat., Vol. 19, North-Holland, Amsterdam, 2001, pp. 533–597.

    Chapter  Google Scholar 

  22. M.A. Lifshits, Gaussian Random Functions, Kluwer Academic Publishers, Dordrecht, Boston, 1995.

    Book  Google Scholar 

  23. Y. Liu and Q. Tang, The subexponential product convolution of two Weibull-type distributions, J. Aust. Math. Soc., 89:277–288, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Mittal and D. Ylvisaker, Limit distributions for the maxima of stationary Gaussian processes, Stoch. Process. Appl., 3(1):1–18, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  25. Z. Palmowski and B. Zwart, Tail asymptotics of the supremum of a regenerative process, J. Appl. Probab., 44(2):349–365, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Pickands, Asymptotic properties of the maximum in a stationary Gaussian process, Trans. Am. Math. Soc, 145:75–86, 1969.

    MathSciNet  MATH  Google Scholar 

  27. V.I. Piterbarg, On the paper by J. Pickands “Upcrossing probabilities for stationary Gaussian processes”, Vestn. Mosk. Univ., Ser. I, 27(5):25–30, 1972 (in Russian). English transl.: Mosc. Univ. Math. Bull.

    MathSciNet  MATH  Google Scholar 

  28. V.I. Piterbarg, Asymptotic Methods in the Theory of Gaussian Processes and Fields, Transl. Math. Monogr., Vol. 148, Amer. Math. Soc., Providence, RI, 1996.

    MATH  Google Scholar 

  29. Q.M. Shao, Bounds and estimators of a basic constant in extreme value theory of Gaussian processes, Stat. Sin., 6:245–258, 1996.

    MATH  Google Scholar 

  30. B. Stamatovic and S. Stamatovic, Cox limit theorem for large excursions of a norm of a Gaussian vector process, Stat. Probab. Lett., 80(19):1479–1485, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  31. Z. Tan and E. Hashorva, Limit theorems for extremes of strongly dependent cyclo-stationary χ-processes, Extremes, 2013 (in press), doi:10.1007/s10687-013-0170-9.

  32. Z. Tan and E. Hashorva, On Piterbarg max-discretisation theorem for standardised maximum of stationary Gaussian processes, Methodol. Comput. Appl. Probab., 2013 (in press), doi:10.1007/s11009-012-9305-8.

  33. Z. Tan, E. Hashorva, and Z. Peng, Asymptotics of maxima of strongly dependent Gaussian processes, J. Appl. Probab., 49(4):1106–1118, 2012.

    Article  MATH  Google Scholar 

  34. Z. Tan and Y. Wang, Extremes values of discrete and continuous time strongly dependent Gaussian processes, Commun. Stat., Theory Methods, 2013 (in press), doi:10.1080/03610926.2011.611322.

  35. B. Zwart, S. Borst, and K. Dębicki, Subexponential asymptotics of hybrid fluid and ruin models, Ann. Appl. Probab., 15:500–517, 2005.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongquan Tan.

Additional information

2The author is supported by the Swiss National Science Foundation, grant 200021-1401633/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Z., Hashorva, E. Exact tail asymptotics of the supremum of strongly dependent Gaussian processes over a random interval. Lith Math J 53, 91–102 (2013). https://doi.org/10.1007/s10986-013-9196-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-013-9196-6

MSC

Keywords

Navigation