Skip to main content

Advertisement

Log in

Habitat assessment for threatened species in the cross-border region of the Atlantic Forest

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

In human-modified landscapes, identification and structural assessment of remaining habitat is required to mitigate habitat loss and fragmentation. In transboundary regions, this analysis must consider ecological limits, as they often do not coincide with sociopolitical boundaries.

Objectives

We aimed to quantify the cover, configuration, protection status, and spatial overlap of suitable habitats for 24 birds and mammals of conservation concern in the trinational region (Argentina, Brazil, and Paraguay) of the Upper Paraná Atlantic Forest.

Methods

Applying a multi-scale framework and the random forest algorithm, we built habitat suitability models considering presence-only data distributed across the Atlantic Forest biome and mapped the relative habitat suitability in the trinational region. We quantified habitat coverage and protection at country and regional scales. We also assessed the spatial configuration and overlap of forests predicted to be suitable for the target species.

Results

The total suitable habitat covered less than 17% of the study region for 20 of the 24 target species. On average, 40.9% of the suitable habitat can be found in Argentina, 30.5% in Brazil, and 28.6% in Paraguay. Only 2.4% of the entire study region is occupied by protected suitable habitat. Protected areas focused on biodiversity conservation showed greater relative coverage of suitable habitat than PAs allowing for multiple human uses. Suitable forests are highly fragmented, especially for threatened species. Nine species showed an average overlap of at least 70% of their suitable forest area in relation to that predicted for the other species.

Conclusions

The remaining habitat of the trinational region is unevenly distributed across countries, with low coverage, low protection, and high fragmentation. Species persistence will require cross-border collaboration to restore, expand, and connect the Upper Paraná forests, and our results provide important information to support this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during the study are available from the corresponding author on request.

References

  • Ashrafzadeh MR, Khosravi R, Adibi MA et al (2020) A multi-scale, multi-species approach for assessing effectiveness of habitat and connectivity conservation for endangered felids. Biol Conserv 245:108523

    Article  Google Scholar 

  • Babí Almenar J, Bolowich A, Elliot T et al (2019) Assessing habitat loss, fragmentation and ecological connectivity in Luxembourg to support spatial planning. Landsc Urban Plan. https://doi.org/10.1016/j.landurbplan.2019.05.004

    Article  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Barlow J, Gardner TA, Araujo IS et al (2007) Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc Natl Acad Sci USA 104:18555–18560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnosky AD, Matzke N, Tomiya S et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57

    Article  CAS  PubMed  Google Scholar 

  • Bellard C, Marino C, Courchamp F (2022) Ranking threats to biodiversity and why it doesn’t matter. Nat Commun 13:10–13

    Article  Google Scholar 

  • Bogoni JA, Muniz-Tagliari M, Peroni N, Peres CA (2020) Testing the keystone plant resource role of a flagship subtropical tree species (Araucaria angustifolia) in the Brazilian Atlantic Forest. Ecol Indic 118:106778

    Article  Google Scholar 

  • Brancalion PHS, Niamir A, Broadbent E et al (2019) Global restoration opportunities in tropical rainforest landscapes. Sci Adv 5:1–12

    Article  Google Scholar 

  • Calderón AP, Louvrier J, Planillo A et al (2022) Occupancy models reveal potential of conservation prioritization for Central American jaguars. Anim Conserv 25:680–691

    Article  Google Scholar 

  • Carlucci MB, Marcilio-Silva V, Torezan JM (2021) The Southern Atlantic Forest: use, degradation, and perspectives for conservation. The Atlantic Forest. Springer International Publishing, Cham, pp 91–111

    Chapter  Google Scholar 

  • Cartes JL (2003) Brief history of conservation in the interior Atlantic forest. In: Galindo-Leal C, Camara IDG (eds) The Atlantic forest of South America: biodiversity status, threats, and outlook. Island Press, Washington, pp 269–287

    Google Scholar 

  • Cazalis V, Princé K, Mihoub JB et al (2020) Effectiveness of protected areas in conserving tropical forest birds. Nat Commun 11:1–8

    Article  Google Scholar 

  • CBD (2010) Strategic plan for biodiversity decision UNEP/CBD/COP/DEC/X/2 adopted by the conference of the parties to the convention on biological diversity at its tenth meeting

  • CBD (2020) Update of the zero draft of the post-2020 global biodiversity framework. CBD, Rio de Janeiro

    Google Scholar 

  • Chase JM, Liebergesell M, Sagouis A et al (2019) FragSAD: a database of diversity and species abundance distributions from habitat fragments. Ecology. https://doi.org/10.1002/ecy.2861

    Article  PubMed  Google Scholar 

  • Coad L, Watson JEM, Geldmann J et al (2019) Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front Ecol Environ 17:259–264

    Article  Google Scholar 

  • Coetzee BWT (2017) Evaluating the ecological performance of protected areas. Biodivers Conserv 26:231–236

    Article  Google Scholar 

  • Coetzee BWT, Gaston KJ, Chown SL (2014) Local scale comparisons of biodiversity as a test for global protected area ecological performance: a meta-analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0105824

    Article  PubMed  PubMed Central  Google Scholar 

  • Crouzeilles R, Lorini ML, Grelle CEV (2013) The importance of using sustainable use protected areas for functional connectivity. Biol Conserv 159:450–457

    Article  Google Scholar 

  • Cushman SA, Wasserman TN (2018) Machine learning for ecology and sustainable natural resource management. Mach Learn Ecol Sustain Nat Resour Manag. https://doi.org/10.1007/978-3-319-96978-7

    Article  Google Scholar 

  • Cushman SA, Macdonald EA, Landguth EL et al (2017) Multiple-scale prediction of forest loss risk across Borneo. Landsc Ecol 32:1581–1598

    Article  Google Scholar 

  • Da Ponte E, Mack B, Wohlfart C et al (2017a) Assessing forest cover dynamics and forest perception in the Atlantic Forest of Paraguay, combining remote sensing and household level data. Forests 8:1–21

    Article  Google Scholar 

  • Da Ponte E, Roch M, Leinenkugel P et al (2017b) Paraguay’s Atlantic Forest cover loss – Satellite-based change detection and fragmentation analysis between 2003 and 2013. Appl Geogr 79:37–49

    Article  Google Scholar 

  • Dar SA, Singh SK, Wan HY et al (2021) Projected climate change threatens Himalayan brown bear habitat more than human land use. Anim Conserv 24:659–676

    Article  Google Scholar 

  • Day J, Dudley N, Hockings M et al (2012) Guidelines for applying the IUCN protected area management categories to marine protected areas. Gland, Switzerland

    Google Scholar 

  • de Carvalho EAR, Morato RG (2013) Factors affecting big cat hunting in Brazilian protected areas. Trop Conserv Sci 6:303–310

    Article  Google Scholar 

  • de Lima RAF, Oliveira AA, Pitta GR et al (2020) The erosion of biodiversity and biomass in the Atlantic Forest biodiversity hotspot. Nat Commun 11:1–16

    Google Scholar 

  • de Marques AAB, Schneider M, Peres CA (2016) Human population and socioeconomic modulators of conservation performance in 788 Amazonian and Atlantic Forest reserves. PeerJ. https://doi.org/10.7717/peerj.2206

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Sancha NU, Boyle SA, McIntyre NE (2021) Identifying structural connectivity priorities in eastern Paraguay’s fragmented Atlantic Forest. Sci Rep 11:1–14

    Google Scholar 

  • Di Bitetti MS, Placci G, Ietz LA (2003) Biodiversity vision of the upper Parana Atlantic Forest Ecoregion: designing a biodiversity conservation landscape and setting priorities for conservation action. World wildlife fund, Washington

    Google Scholar 

  • Diniz MF, Machado RB, Bispo AA, de Júnior MP (2018) Can we face different types of storms under the same umbrella? Efficiency and consistency of connectivity umbrellas across different patchy landscape patterns. Landsc Ecol 33:1911–1923

    Article  Google Scholar 

  • Diniz MF, Coelho MTP, de Sousa FG et al (2021) The underestimated role of small fragments for carnivore dispersal in the Atlantic Forest. Perspect Ecol Conserv 19:81–89

    Google Scholar 

  • Diniz MF, Coelho MTP, Sánchez-Cuervo AM, Loyola R (2022a) How 30 years of land-use changes have affected habitat suitability and connectivity for Atlantic Forest species. Biol Conserv 274:109737

    Article  Google Scholar 

  • Diniz MF, Dallmeier F, Gregory T et al (2022b) Balancing multi-species connectivity and socio-economic factors to connect protected areas in the Paraguayan Atlantic Forest. Landsc Urban Plan. https://doi.org/10.1016/j.landurbplan.2022.104400

    Article  Google Scholar 

  • Dudley N, Stolton S (2022) Best Practice in Delivering the 30x30 Target, 1st edn. The Nature Conservancy and Equilibrium Research, Bristol

    Google Scholar 

  • Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Esquivel A, Zarza R, Tiffer-Sotomayor R et al (2019) Conservation status and challenges of the Atlantic Forest birds of Paraguay. Diversity 11:247

    Article  Google Scholar 

  • Evans JS, Murphy MA, Holden ZA, Cushman SA (2011) Modeling species distribution and change using random forest. In: Drew CA, Wiersma YF, Huettmann F (eds) Predictive species and habitat modeling in landscape ecology: concepts and applications. Springer, New York, pp 139–159

    Chapter  Google Scholar 

  • Evans J, Murphy M (2019) rfUtilities. R package version 2.1–5. https://cran.r-project.org/package=rfUtilities

  • Farr TG, Rosen PA, Caro E et al (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004

    Article  Google Scholar 

  • Flesher KM, Medici EP (2022) The distribution and conservation status of Tapirus terrestris in the South American Atlantic Forest. Neotrop Biol Conserv 17:1–19

    Article  Google Scholar 

  • Fletcher R, Fortin M-J (2018) Spatial ecology and conservation modeling. Springer International Publishing, Cham

    Book  Google Scholar 

  • Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574

    Article  CAS  PubMed  Google Scholar 

  • FVSA and WWF (2017) State of the Atlantic Forest: three Countries, 148 Million People, one ofthe richest forests on Earth. Fundación Vida Silvestre Argentina and WWF, Puerto Iguazú, Argentina

    Google Scholar 

  • Galetti M, Villar N, Paz C (2021) Causes and consequences of large-scale defaunation in the Atlantic Forest. In: The Atlantic Forest. Springer International Publishing, Cham

    Book  Google Scholar 

  • GBIF (2023) Derived dataset GBIF.org (6 May 2023) Filtered export of GBIF occurrence data. https://doi.org/10.15468/dd.jcq5pf

  • Gibbs HK, Ruesch AS, Achard F et al (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci USA 107:16732–16737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson L, Lee TM, Koh LP et al (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381

    Article  CAS  PubMed  Google Scholar 

  • Gray CL, Hill SLL, Newbold T et al (2016) Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat Commun. https://doi.org/10.1038/ncomms12306

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimmett L, Whitsed R, Horta A (2020) Presence-only species distribution models are sensitive to sample prevalence: evaluating models using spatial prediction stability and accuracy metrics. Ecol Modell 431:109194

    Article  Google Scholar 

  • Harfoot MBJ, Johnston A, Balmford A et al (2021) Using the IUCN Red List to map threats to terrestrial vertebrates at global scale. Nat Ecol Evol 5:1510–1519

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasui É, Metzger JP, Pimentel RG et al (2018) ATLANTIC BIRDS: a data set of bird species from the Brazilian Atlantic Forest. Ecology 99:497

    Article  PubMed  Google Scholar 

  • Hesselbarth MHK, Sciaini M, With KA et al (2019) landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography (cop) 42:1648–1657

    Article  Google Scholar 

  • Iezzi ME, Di Bitetti MS, Martínez Pardo J et al (2022) Forest fragments prioritization based on their connectivity contribution for multiple Atlantic Forest mammals. Biol Conserv 266:109433

    Article  Google Scholar 

  • Izquierdo AE, De Angelo CD, Aide TM (2008) Thirty years of human demography and land-use change in the Atlantic Forest of Misiones, Argentina: an evaluation of the forest transition model. Ecol Soc. https://doi.org/10.5751/es-02377-130203

    Article  Google Scholar 

  • Johnson CN, Balmford A, Brook BW et al (2017) Biodiversity losses and conservation responses in the Anthropocene. Science 356:270–275

    Article  CAS  PubMed  Google Scholar 

  • Jones KR, Venter O, Fuller RA et al (2018) One-third of global protected land is under intense human pressure. Science 360:788–791

    Article  CAS  PubMed  Google Scholar 

  • Kaboodvandpour S, Almasieh K, Zamani N (2021) Habitat suitability and connectivity implications for the conservation of the Persian leopard along the Iran-Iraq border. Ecol Evol 11:13464–13474

    Article  PubMed  PubMed Central  Google Scholar 

  • Karger DN, Conrad O, Böhner J et al (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:1–20

    Article  Google Scholar 

  • Kark S, Tulloch A, Gordon A et al (2015) Cross-boundary collaboration: key to the conservation puzzle. Curr Opin Environ Sustain 12:12–24

    Article  Google Scholar 

  • Landis J, Koch G (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  • Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science 349:827–832

    Article  CAS  PubMed  Google Scholar 

  • Li J, Weckworth BV, McCarthy TM et al (2020) Defining priorities for global snow leopard conservation landscapes. Biol Conserv 241:108387

    Article  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  • Lima F, Beca G, Muylaert RL et al (2017) ATLANTIC-CAMTRAPS: a dataset of medium and large terrestrial mammal communities in the Atlantic Forest of South America. Ecology 98:2979–2979

    Article  PubMed  Google Scholar 

  • Liu C, White M, Newell G, Griffioen P (2013) Species distribution modelling for conservation planning in Victoria, Australia. Ecol Modell 249:68–74

    Article  Google Scholar 

  • Liu J, Yong DL, Choi CY, Gibson L (2020) Transboundary frontiers: an emerging priority for biodiversity conservation. Trends Ecol Evol 35:679–690

    Article  PubMed  Google Scholar 

  • Maiorano L, Falcucci A, Boitani L (2008) Size-dependent resistance of protected areas to land-use change. Proc R Soc B Biol Sci 275:1297–1304

    Article  Google Scholar 

  • Mansourian S, Luz A, Aquino L et al (2020) Lessons learnt from 16 years of Restoring the Atlantic Forest at a Trinational Level: the Upper Paraná in Argentina, Brazil and Paraguay. 56 pages

  • MapBiomas-Bosque Atlántico Trinacional (2021) MapBiomas Trinational Atlantic Forest Project—Collection 1 of the Annual Coverage and Land Use Series, acquired December 14th 2021 through the link: https://bosqueatlantico.mapbiomas.org/en

  • MapBiomas-Brazil (2021) MapBiomas Project—Collection 5 of the annual series of land use and land cover maps of Brazil, accessed on December 14th 2021 through the link: http://mapbiomas.org/

  • Martinez J, Santiago P, Insaurralde A et al (2022) Much more than forest loss: four decades of habitat connectivity decline for Atlantic Forest jaguars. Landsc Ecol. https://doi.org/10.1007/s10980-022-01557-y

    Article  Google Scholar 

  • Meurant M, Gonzalez A, Doxa A, Albert CH (2018) Selecting surrogate species for connectivity conservation. Biol Conserv 227:326–334

    Article  Google Scholar 

  • Mi C, Huettmann F, Guo Y et al (2017) Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ. https://doi.org/10.7717/peerj.2849

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittermeier RA, Robles-Gil P, Hoffman M et al (2005) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City

    Google Scholar 

  • Mohebalian PM, Lopez LN, Tischner AB, Aguilar FX (2022) Deforestation in South America’s tri-national Paraná Atlantic Forest: trends and associational factors. For Policy Econ 137:102697

    Article  Google Scholar 

  • Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261

    Article  PubMed  Google Scholar 

  • Nagy-Reis M, de Oshima JE, Kanda CZ et al (2020) Neotropical Carnivores: a data set on carnivore distribution in the Neotropics. Ecology 101:1–5

    Article  Google Scholar 

  • Nolte C, Agrawal A, Silvius KM, Britaldo SSF (2013) Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc Natl Acad Sci USA 110:4956–4961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Pacifici M, Di Marco M, Watson JEM (2020) Protected areas are now the last strongholds for many imperiled mammal species. Conserv Lett 13:1–7

    Article  Google Scholar 

  • Paviolo A, De AC, Ferraz KMPMB et al (2016) A biodiversity hotspot without its top predator? The challenge of jaguar conservation in the Atlantic Forest of South America. Nat Forthcom. https://doi.org/10.1038/srep37147

    Article  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R et al (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science. https://doi.org/10.1126/science.1246752

    Article  PubMed  Google Scholar 

  • Powers RP, Jetz W (2019) Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat Clim Chang 9:323–329

    Article  Google Scholar 

  • Rather TA, Kumar S, Khan JA (2021) Using machine learning to predict habitat suitability of sloth bears at multiple spatial scales. Ecol Process. https://doi.org/10.1186/s13717-021-00323-3

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Ricketts TH, Daily GC, Ehrlich PR, Michener CD (2004) Economic value of tropical forest to coffee production. Proc Natl Acad Sci 101:12579–12582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberge JM, Angelstam P (2004) Usefulness of the umbrella species concepts as a conservation tool. Conserv Biol 18:76–85

    Article  Google Scholar 

  • Rodrigues ASL, Cazalis V (2020) The multifaceted challenge of evaluating protected area effectiveness. Nat Commun 11:1–4

    Article  Google Scholar 

  • Rosa MR, Brancalion PHS, Crouzeilles R et al (2021) Hidden destruction of older forests threatens Brazil’s Atlantic Forest and challenges restoration programs. Sci Adv 7:1–9

    Article  Google Scholar 

  • Scheer MB, Blum CT (2011) Arboreal diversity of the Atlantic Forest of Southern Brazil: from the beach ridges to the Paraná River. In: the dynamical processes of biodiversity—case studies of evolution and spatial distribution. InTech, London

    Google Scholar 

  • Sodhi NS, Butler R, Laurance WF, Gibson L (2011) Conservation successes at micro-, meso- and macroscales. Trends Ecol Evol 26:585–594

    Article  PubMed  Google Scholar 

  • Souza Y, Gonçalves F, Lautenschlager L et al (2019) ATLANTIC MAMMALS: a data set of assemblages of medium- and large-sized mammals of the Atlantic Forest of South America. Ecology. https://doi.org/10.1002/ecy.2785

    Article  PubMed  Google Scholar 

  • Souza CM, Shimbo JZ, Rosa MR et al (2020) Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and earth engine. Remote Sens. https://doi.org/10.3390/RS12172735

    Article  Google Scholar 

  • Strassburg BBN, Iribarrem A, Beyer HL et al (2020) Global priority areas for ecosystem restoration. Nature 586:724–729

    Article  CAS  PubMed  Google Scholar 

  • Thomas P (2013) Araucaria angustifolia. The IUCN Red List of Threatened Species 2013. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T32975A2829141.en. Accessed 14 Nov 2022

  • Thornton D, Zeller K, Rondinini C et al (2016) Assessing the umbrella value of a range-wide conservartion network for jaguar (Panthera onca). Ecol Soc Am 26:1112–1124

    Google Scholar 

  • Thornton D, Branch L, Murray D (2020) Distribution and connectivity of protected areas in the Americas facilitates transboundary conservation. Ecol Appl 30:1–10

    Article  Google Scholar 

  • UNEP-WCMC, IUCN (2022) Protected Planet: The World Database on Protected Areas (WDPA)/OECM Database. Cambridge, UK: UNEP-WCMC and IUCN. Available at: www.protectedplanet.net. Accessed 13 Jan 2022

  • Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G (2021) Modelling species presence-only data with random forests. Ecography (cop) 44:1731–1742

    Article  Google Scholar 

  • Venter O, Fuller RA, Segan DB et al (2014) Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001891

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira RRS, Pressey RL, Loyola R (2019) The residual nature of protected areas in Brazil. Biol Conserv 233:152–161

    Article  Google Scholar 

  • Ward G, Hastie T, Barry S et al (2009) Presence-only data and the em algorithm. Biometrics 65:554–563

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams BA, Venter O, Allan JR et al (2020) Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3:371–382

    Article  Google Scholar 

  • Winkler K, Fuchs R, Rounsevell M, Herold M (2021) Global land use changes are four times greater than previously estimated. Nat Commun 12:1–10

    Article  Google Scholar 

  • Zizka A, Silvestro D, Andermann T et al (2019) CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol Evol 10:744–751

    Article  Google Scholar 

Download references

Funding

This work was supported by the Smithsonian National Zoo and Conservation Biology Institute’s Center for Conservation and Sustainability (NZCBI-CCS). This is contribution #71 of the CCS Latin American Biodiversity Programs.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by MFD. The first draft of the manuscript was written by MFD and MJA-N, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Milena Fiuza Diniz.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 953 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, M.F., Andrade-Núñez, M.J., Dallmeier, F. et al. Habitat assessment for threatened species in the cross-border region of the Atlantic Forest. Landsc Ecol 38, 2241–2260 (2023). https://doi.org/10.1007/s10980-023-01689-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-023-01689-9

Keywords

Navigation