Skip to main content
Log in

Integrating landscape resistance and multi-scale predictor of habitat selection for amphibian distribution modelling at large scale

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Species distribution modelling is a common tool in conservation biology but two main criticisms remain: (1) the use of simplistic variables that do not account for species movements and/or connectivity and (2) poor consideration of multi-scale processes driving species distributions.

Objectives

We aimed to determine if including multi-scale and fine-scale movement processes in SDM predictors would improve accuracy of SDM for low-mobility amphibian species compared with species-level analysis.

Methods

We tested and compared different SDMs for nine amphibian species with four different sets of predictors: (1) simple distance-based predictors; (2) single-scale compositional predictors; (3) multi-scale compositional predictors with a priori selection of scale based on knowledge of species mobility and scale-of-effect; and (4) multi-scale compositional predictors calculated using a friction-based functional grain to account for resource accessibility with landscape resistance to movement.

Results

Using friction-based functional grain predictors produced slight to moderate improvements of SDM performance at large scale. The multi-scale approach, with a priori scale selection, led to ambiguous results depending on the species studied, in particular for generalist species.

Conclusion

We underline the potential of using a friction-based functional grain to improve SDM predictions for species-level analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sample and access procedure are available online: https://doi.org/10.5281/zenodo.4358147.

Code availability

Scripts and codes are available online: https://doi.org/10.5281/zenodo.4358147.

References

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Araújo MB, Anderson RP, Barbosa AM, Beale CM, Dormann CF, Early R, Garcia RA, Guisan A, Maiorano L, Naimi B, O’Hara RB (2019) Standards for distribution models in biodiversity assessments. Sci Adv 5:1–12

    Article  Google Scholar 

  • Arntzen JW, Abrahams C, Meilink WR, Iosif R, Zuiderwijk A (2017) Amphibian decline, pond loss and reduced population connectivity under agricultural intensification over a 38 year period. Biodivers Conserv 26:1411–1430

    Article  Google Scholar 

  • Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: Variable selection and scale. J Biogeogr 38:1–8

    Article  Google Scholar 

  • Baguette M, Van Dyck H (2007) Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc Ecol 22:1117–1129

    Article  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338

    Article  Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol model 222:1810–1819

    Article  Google Scholar 

  • Baudry J, Bunce RGH, Burel F (2000) Hedgerows: an international perspective on their origin, function and management. J Environ Manage 60:7–22

    Article  Google Scholar 

  • Bell DM, Schlaepfer DR (2016) On the dangers of model complexity without ecological justification in species distribution modeling. Ecol Model 330:50–59

    Article  Google Scholar 

  • Bellamy C, Boughey K, Hawkins C, Reveley S, Spake R, Williams C, Altringham J (2020) A sequential multi-level framework to improve habitat suitability modelling. Landsc Ecol 35:1001–1020

  • Boissinot A, Besnard A, Lourdais O (2019) Amphibian diversity in farmlands: combined influences of breeding-site and landscape attributes in western France. Agric Ecosyst Environ 269:51–61

    Article  Google Scholar 

  • Boissinot A (2009) Influence de la structure du biotope de reproduction et de l’agencement du paysage, sur le peuplement d’amphibiens d’une région bocagère de l’ouest de la France. Diplôme de l’Ecole Pratique des Hautes Etudes, Laboratoire de Biogéographie et d’Ecologie des Vertébrés (EPHE/CEFE), 1, 192

  • Bolton M, Conolly G, Carroll M, Wakefield ED, Caldow R (2019) A review of the occurrence of inter-colony segregation of seabird foraging areas and the implications for marine environmental impact assessment. Ibis 161:241–259

    Article  Google Scholar 

  • Boscolo D, Metzger JP (2009) Is bird incidence in Atlantic forest fragments influenced by landscape patterns at multiple scales? Landsc Ecol 24:907–918

    Article  Google Scholar 

  • Boulangeat I, Gravel D, Thuiller W (2012) Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecol Lett 15:584–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Boussard H, Baudry J (2017) Chloe4.0: A software for landscape pattern analysis. Software

  • Brotons L, Thuiller W, Araújo MB, Hirzel AH (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography (cop) 27:437–448

    Article  Google Scholar 

  • Brotons L, De Cáceres M, Fall A, Fortin MJ (2012) Modeling bird species distribution change in fire prone Mediterranean landscapes: incorporating species dispersal and landscape dynamics. Ecography (cop) 35:458–467

    Article  Google Scholar 

  • Cardador L, Sardà-Palomera F, Carrete M, Mañosa S (2014) Incorporating spatial constraints in different periods of the annual cycle improves species distribution model performance for a highly mobile bird species. Divers Distrib 20:515–528

    Article  Google Scholar 

  • Collins SJ, Fahrig L (2017) Responses of anurans to composition and configuration of agricultural landscapes. Agric Ecosyst Environ 239:399–409

    Article  Google Scholar 

  • Compton BW, McGarigal K, Cushman SA, Gamble LR (2007) A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21:788–799

    Article  PubMed  Google Scholar 

  • Connor T, Hull V, Viña A, Shortridge A, Tang Y, Zhang J, Wang F, Liu J (2018) Effects of grain size and niche breadth on species distribution modeling. Ecography 41:1270–1282

    Article  Google Scholar 

  • Crase B, Liedloff A, Vesk PA, Fukuda Y, Wintle BA (2014) Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts. Glob Chang Biol 20:2566–2579

    Article  PubMed  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  • Dawo B, Kalko EKV, Dietz M (2021) Spatial organization reflects the social organization in Bechstein’s bats. Ann Zool Fenn 50:356–370

    Google Scholar 

  • Decout S, Manel S, Miaud C, Luque S (2012) Integrative approach for landscape-based graph connectivity analysis: a case study with the common frog (Rana temporaria) in human-dominated landscapes. Landsc Ecol 27:267–279

    Article  Google Scholar 

  • Denoël M, Lehmann A (2006) Multi-scale effect of landscape processes and habitat quality on newt abundance: implications for conservation. Biol Conserv 130:495–504

    Article  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (cop) 36:27–46

    Article  Google Scholar 

  • Duflot R, Avon C, Roche P, Bergès L (2018) Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: an applied methodological framework and a species case study. J Nat Conserv 46:38–47

    Article  Google Scholar 

  • Eigenbrod F, Hecnar SJ, Fahrig L (2008) Accessible habitat: an improved measure of the effects of habitat loss and roads on wildlife populations. Landsc Ecol 23:159–168

    Article  Google Scholar 

  • Estrada-Peña A (2005) Effects of habitat suitability and landscape patterns on tick (Acarina) metapopulation processes. Landsc Ecol 20:529–541

    Article  Google Scholar 

  • Fahrig L, Pedlar JH, Pope SE, Taylor PD, Wegner JF (1995) Effect of road traffic on amphibian density. Biol Conserv 73:177–182

    Article  Google Scholar 

  • Ficetola GF, De Bernardi F (2004) Amphibians in a human-dominated landscape: the community structure is related to habitat features and isolation. Biol Conserv 119:219–230

    Article  Google Scholar 

  • Foltête JC, Clauzel C, Vuidel G, Tournant P (2012) Integrating graph-based connectivity metrics into species distribution models. Landsc Ecol 27:557–569

    Article  Google Scholar 

  • Foltête JC, Savary P, Clauzel C, Bourgeois M, Girardet X, Sahraoui Y, Vuidel G, Garnier S (2020) Coupling landscape graph modeling and biological data: a review. Landsc Ecol. https://doi.org/10.1007/s10980-020-00998-7

    Article  Google Scholar 

  • Fournier A, Barbet-Massin M, Rome Q, Courchamp F (2017) Predicting species distribution combining multi-scale drivers. Glob Ecol Conserv 12:215–226

    Article  Google Scholar 

  • Franklin J (2010) Moving beyond static species distribution models in support of conservation biogeography. Divers Distrib 16:321–330

    Article  Google Scholar 

  • Freeman E (2015) Package “PresenceAbsence.” R Packag

  • Galpern P, Manseau M (2013a) Modelling the influence of landscape connectivity on animal distribution: a functional grain approach. Ecography (cop) 36:1004–1016

    Article  Google Scholar 

  • Galpern P, Manseau M (2013b) Finding the functional grain: comparing methods for scaling resistance surfaces. Landsc Ecol 28:1269–1281

    Article  Google Scholar 

  • Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: Capercaillie in the Swiss Alps. Landsc Ecol 20:703–717

    Article  Google Scholar 

  • Guerry AD, Hunter ML (2002) Amphibian distributions in a landscape of forests and agriculture: an examination of landscape composition and configuration. Conserv Biol 16:745–754

    Article  Google Scholar 

  • Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A, Kujala H, Lentini PE, McCarthy MA, Tingley R, Wintle BA (2015) Is my species distribution model fit for purpose? Matching data and models to applications. Glob Ecol Biogeogr 24:276–292

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  PubMed  Google Scholar 

  • Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models: with applications in R. The University of Chicago Press

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hallman TA, Robinson WD (2020) Comparing multi- and single-scale species distribution and abundance models built with the boosted regression tree algorithm. Landsc Ecol 35:1161–1174

    Article  Google Scholar 

  • Hamer AJ (2018) Accessible habitat and wetland structure drive occupancy dynamics of a threatened amphibian across a peri-urban landscape. Landsc Urban Plan 178:228–237

    Article  Google Scholar 

  • Hanski I (1998) Metapopulation dynamics. Nature 396:41–49

    Article  CAS  Google Scholar 

  • Hartel T, Schweiger O, Öllerer K, Cogălniceanu D, Arntzen JW (2010) Amphibian distribution in a traditionally managed rural landscape of Eastern Europe: probing the effect of landscape composition. Biol Conserv 143:1118–1124

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (cop) 29:773–785

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MR (2020) Package ‘dismo’. Circles 9(1):1–68

  • Holloway P, Miller JA (2017) A quantitative synthesis of the movement concepts used within species distribution modelling. Ecol Model 356:91–103

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Landsc Ecol 27:929–941

    Article  Google Scholar 

  • Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24:52–63

    Article  Google Scholar 

  • Janin A, Léna JP, Ray N, Delacourt C, Allemand P, Joly P (2009) Assessing landscape connectivity with calibrated cost-distance modelling: predicting common toad distribution in a context of spreading agriculture. J Appl Ecol 46:833–841

    Article  Google Scholar 

  • Janin A, Léna JP, Deblois S, Joly P (2012) Use of stress-hormone levels and habitat selection to assess functional connectivity of a landscape for an amphibian. Conserv Biol 26:923–931

    Article  PubMed  Google Scholar 

  • Jarvis LE, Hartup M, Petrovan SO (2019) Road mitigation using tunnels and fences promotes site connectivity and population expansion for a protected amphibian. Eur J Wildl Res. https://doi.org/10.1007/s10344-019-1263-9

    Article  Google Scholar 

  • Jeliazkov A, Lorrillière R, Besnard A, Garnier J, Silvestre M, Chiron F (2019) Cross-scale effects of structural and functional connectivity in pond networks on amphibian distribution in agricultural landscapes. Freshw Biol 64:997–1014

    Article  Google Scholar 

  • Joly P, Morand C, Cohas A (2003) Habitat fragmentation and amphibian conservation: building a tool for assessing landscape matrix connectivity. C R Biol 326:132–139

    Article  Google Scholar 

  • Keeley ATH, Beier P, Keeley BW, Fagan ME (2017) Habitat suitability is a poor proxy for landscape connectivity during dispersal and mating movements. Landsc Urban Plan 161:90–102

    Article  Google Scholar 

  • Laan R, Verboom B (1990) Effects of pool size and isolation on amphibian communities. Biol Conserv 54:251–262

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Lima SL, Zollner PA (1996) Towards a behavioral ecology of ecological landscapes. Trends Ecol Evol 11:131–135

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Newell G, White M (2019) The effect of sample size on the accuracy of species distribution models: considering both presences and pseudo-absences or background sites. Ecography (cop) 42:535–548

    Article  Google Scholar 

  • Marchadour B (coord.) (2009) Mammifères, Amphibiens et Reptiles prioritaires en Pays de la Loire. Coordination régionale LPO Pays de la Loire, Conseil régional des Pays de la Loire, 125 p.

  • Marsh DM, Trenham PC (2001) Metapopulation dynamics and amphibian conservation. Conserv Biol 15:40–49

    Article  Google Scholar 

  • Matos C, Petrovan SO, Wheeler PM, Ward AI (2019) Landscape connectivity and spatial prioritization in an urbanising world : A network analysis approach for a threatened amphibian. Biol Conserv 237:238–247. https://doi.org/10.1016/j.biocon.2019.06.035

    Article  Google Scholar 

  • Martin AE, Fahrig L (2012) Measuring and selecting scales of effect for landscape predictors in species-habitat models. Ecol Appl 22:2277–2292

    Article  PubMed  Google Scholar 

  • Matutini F, Baudry J, Pain G, Sineau M, Pithon J (2021) How citizen science could improve species distribution models and their independent assessment. Ecol Evol. https://doi.org/10.1002/ece3.7210

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayor SJ, Schneider DC, Schaefer JA, Mahoney SP (2009) Habitat selection at multiple scales. Ecoscience 16:238–247

    Article  Google Scholar 

  • Mazerolle MJ (2005) Drainage ditches facilitate frog movements in a hostile landscape. Landsc Ecol 20:579–590

    Article  Google Scholar 

  • McGarigal K, Wan HY, Zeller KA, Timm BC, Cushman SA (2016) Multi-scale habitat selection modeling: a review and outlook. Landsc Ecol 31:1161–1175

    Article  Google Scholar 

  • McPherson JM, Jetz W (2007) Effects of species’ ecology on the accuracy of distribution models. Ecography (cop) 30:135–151

    Google Scholar 

  • Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of landscape effects on species? Landsc Ecol 31:1177–1194

    Article  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Moll RJ, Cepek JD, Lorch PD, Dennis PM, Robison T, Montgomery RA (2020) At what spatial scale(s) do mammals respond to urbanization? Ecography (cop) 43:171–183

    Article  Google Scholar 

  • Newbold T, Reader T, El-Gabbas A, et al. (2010) Testing the accuracy of species distribution models using species records from a new field survey. Oikos 119:1326–1334. https://doi.org/10.1111/j.1600-0706.2009.18295.x

    Article  Google Scholar 

  • O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41:673–690

    Article  Google Scholar 

  • Pittman SE, Osbourn MS, Semlitsch RD (2014) Movement ecology of amphibians: a missing component for understanding population declines. Biol Conserv 169:44–53

    Article  Google Scholar 

  • Pope SE, Fahrig L, Merriam HG (2000) Landscape complementation and metapopulation effects on leopard frog populations. Ecology 81:2498–2508

    Article  Google Scholar 

  • Préau C, Isselin-Nondedeu F, Sellier Y, Bertrand R, Grandjean F (2019) Predicting suitable habitats of four range margin amphibians under climate and land-use changes in southwestern France. Reg Environ Chang 19:27–38

    Article  Google Scholar 

  • Quantum GIS (2019) Development Team Quantum GIS (2014) Geographic Information System. Open Source Geospatial Foundation Project. Online at: http://qgis.osgeo.org.Software

  • R Core Team (2019) R: A language and environment for statistical computing. R foundation for statistical computing. https://www.R-project.org/.Software

  • Ray N, Lehmann A, Joly P (2002) Modeling spatial distribution of amphibian populations: a GIS approach based on habitat matrix permeability. Biodivers Conserv 11:2143–2165

    Article  Google Scholar 

  • Ribeiro R, Carretero MA, Sillero N, Alarcos G, Ortiz-Santaliestra M, Lizana M, Llorente GA (2011) The pond network: Can structural connectivity reflect on (amphibian) biodiversity patterns? Landsc Ecol 26:673–682

    Article  Google Scholar 

  • Richard Y, Armstrong DP (2010) The importance of integrating landscape ecology in habitat models: isolation-driven occurrence of north island robins in a fragmented landscape. Landsc Ecol 25:1363–1374

    Article  Google Scholar 

  • Romero S, Campbell JF, Nechols JR, With KA (2009) Movement behavior in response to landscape structure: the role of functional grain. Landsc Ecol 24:39–51

    Article  Google Scholar 

  • Rose JP, Halstead BJ, Fisher RN (2020) Integrating multiple data sources and multi-scale land-cover data to model the distribution of a declining amphibian. Biol Conserv 241:108374

    Article  Google Scholar 

  • Safner T, Miaud C, Gaggiotti O, Decout S, Rioux D, Zundel S, Manel S (2011) Combining demography and genetic analysis to assess the population structure of an amphibian in a human-dominated landscape. Conserv Genet 12:161–173

    Article  Google Scholar 

  • Sinsch U (2014) Movement ecology of amphibians: from individual migratory behaviour to spatially structured populations in heterogeneous landscapes 1, 2. Can J Zool 92:491–502

    Article  Google Scholar 

  • Smith MA, Green DM (2005) Dispersal and the metapopulation in amphibian and paradigm ecology are all amphibian conservation: populations metapopulations? Ecography (cop) 28:110–128

    Article  Google Scholar 

  • Soberon J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Informatics 2:1–10

    Article  Google Scholar 

  • Stevens BS, Conway CJ (2019) Predicting species distributions: unifying model selection and scale optimization for multi-scale occupancy models. Ecosphere. https://doi.org/10.1002/ecs2.2748

    Article  Google Scholar 

  • Summers DM, Bryan BA, Crossman ND, Meyer WS (2012) Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Glob Chang Biol 18:2335–2348

    Article  Google Scholar 

  • Swanson AK, Dobrowski SZ, Finley AO, Thorne JH, Schwartz MK (2013) Spatial regression methods capture prediction uncertainty in species distribution model projections through time. Glob Ecol Biogeogr. https://doi.org/10.1111/j.1466-8238.2012.00794.x

    Article  Google Scholar 

  • Testud G, Fauconnier C, Labarraque D, Lengagne T, Le Petitcorps Q, Picard D, Miaud C (2020) Acoustic enrichment in wildlife passages under railways improves their use by amphibians. Glob Ecol Conserv. https://doi.org/10.1016/j.gecco.2020.e01252

    Article  Google Scholar 

  • Thornton DH, Fletcher RJ (2013) Body size and spatial scales in avian response to landscapes: a meta-analysis. Ecography (cop). https://doi.org/10.1111/j.1600-0587.2013.00540.x

    Article  Google Scholar 

  • Tulloch AI, Sutcliffe P, Naujokaitis-Lewis I, Tingley R, Brotons L, Ferraz KM, Possingham H, Guisan A, Rhodes JR (2016) Conservation planners tend to ignore improved accuracy of modelled species distributions to focus on multiple threats and ecological processes. Biol Conserv 199:157–171

    Article  Google Scholar 

  • Van Buskirk J (2012) Permeability of the landscape matrix between amphibian breeding sites. Ecol Evol 2:3160–3167

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Buskirk J (2012) Permeability of the landscape matrix between amphibian breeding sites. Ecol Evol. https://doi.org/10.1002/ece3.424

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Wiens JA, Stenseth NC, Van HB, Ims RA (1993) Ecological mechanisms and landscape ecology. Oikos 66:369

    Article  Google Scholar 

  • Wunderlich RF, Lin Y-P, Anthony J, Petway JR (2019) Two alternative evaluation metrics to replace the true skill statistic in the assessment of species distribution models. Nat Conserv 35:97–116

    Article  Google Scholar 

  • Youngquist MB, Boone MD (2014) Movement of amphibians through agricultural landscapes: the role of habitat on edge permeability. Biol Conserv 175:148–155

    Article  Google Scholar 

  • Zanini F, Klingemann A, Schlaepfer R, Schmidt BR (2008) Landscape effects on anuran pond occupancy in an agricultural countryside: barrier-based buffers predict distributions better than circular buffers. Can J Zool 86:692–699

    Article  Google Scholar 

  • Zanini F, Pellet J, Schmidt BR (2009) The transferability of distribution models across regions: an amphibian case study. Divers Distrib 15:469–480

    Article  Google Scholar 

  • Zeller KA, Mcgarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol. https://doi.org/10.1007/s10980-012-9737-0

    Article  Google Scholar 

  • Zurell D, Franklin J, König C, Yates KL, Zimmerman N, Merow C (2020) A standard protocol for reporting species distribution models. Ecography (cop) 43:1261–1277. https://doi.org/10.1111/ecog.04960

    Article  Google Scholar 

Download references

Acknowledgements

This work would not have been possible without the support of the Pays de la Loire Herpetological Group, the CPIE Regional Union and the French BirdLife partner (LPO). We are especially grateful to Morgane Sineau and Benoit Marchadour who coordinate regional naturalists’ databases. We also acknowledge the many naturalists involved, for access to data and for additional fieldwork, especially Dorian Angot, Baptiste Gaboriau, Ludovic Aubry and Martin Bonhomme. We thank Andrew Chin, Jean Secondi and Aurélien Besnard for providing helpful discussion and Hugues Boussard for his help for metrics’ calculation. Our work was supported by funding from Ecole Supérieure d’Agricultures d’Angers, Angers Loire Metropole, The French Society for Ecology and Evolution (SFE2) and “Humanité et Biodiversité”.

Funding

PhD grant came from Ecole Supérieure d’Agricultures d’Angers and Angers Loire Métropole. Additional funding for field work provides from The French Society for Ecology and Evolution and “Humanité et Biodiversité”.

Author information

Authors and Affiliations

Authors

Contributions

FM: Conceptualization (Equal), Data curation (Lead), Formal analysis (Lead), Funding acquisition (Supporting), Methodology (Lead), Investigation (Lead), Visualization (Lead), Writing-original draft (Lead), Writing-review & editing (Lead); MJ-F: Conceptualization (Equal), Methodology (Supporting), Supervision (Supporting), Writing-original draft (Supporting), Writing-review & editing (Supporting); JB: Conceptualization (Equal), Methodology (Supporting), Supervision (Equal), Writing-original draft (Supporting), Writing-review & editing (Supporting); GP: Conceptualization (Equal), Methodology (Supporting), Supervision (Equal), Writing-original draft (Supporting), Writing-review & editing (Supporting); JP: Conceptualization (Equal), Methodology (Supporting), Supervision (Equal), Writing-original draft (Supporting), Writing-review & editing (Supporting).

Corresponding author

Correspondence to Florence Matutini.

Ethics declarations

Conflict of interest

The authors of this preprint declare that they have no financial conflict of interest with the content of this article.

Ethical approval

Access to citizen data is subject to a user agreement between our lab and the associations involved. We have done our best to involve volunteers and associations in this work with regular exchanges (attendance at meetings, reporting of results in different forms, organization of steering committees). In addition, all people involved in handling amphibians had specific ministerial authorization.

Consent to participate

All participants in this study consented.

Consent for publication

All authors contributed critically to the drafts and gave final approval for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matutini, F., Baudry, J., Fortin, MJ. et al. Integrating landscape resistance and multi-scale predictor of habitat selection for amphibian distribution modelling at large scale. Landscape Ecol 36, 3557–3573 (2021). https://doi.org/10.1007/s10980-021-01327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-021-01327-2

Keywords

Navigation