Skip to main content
Log in

Anisotropic mechanosensitive pathways in the diaphragm and their implications in muscular dystrophies

  • Review Article
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The diaphragm is the “respiratory pump;” the muscle that generates pressure to allow ventilation. Diaphragm muscles play a vital function and thus are subjected to continuous mechanical loading. One of its peculiarities is the ability to generate distinct mechanical and biochemical responses depending on the direction through which the mechanical forces applied to it. Contractile forces originated from its contractile components are transmitted to other structural components of its muscle fibers and the surrounding connective tissue. The anisotropic mechanical properties of the diaphragm are translated into biochemical signals that are directionally mechanosensitive by mechanisms that appear to be unique to this muscle. Here, we reviewed the current state of knowledge on the biochemical pathways regulated by mechanical signals emphasizing their anisotropic behavior in the normal diaphragm and analyzed how they are affected in muscular dystrophies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M et al (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89:1065–1072

    Article  PubMed  CAS  Google Scholar 

  • Beytía ML, Vry J, Kirschner J (2012) Drug treatment of Duchenne muscular dystrophy: available evidence and perspectives. Acta Myol 31:4–8

    Google Scholar 

  • Boriek AM, Miller CC, Rodarte JR (1998) Muscle fiber architecture of the dog diaphragm. J Appl Physiol 84:318–326

    Article  PubMed  CAS  Google Scholar 

  • Boriek AM, Capetanaki Y, Hwang W, Officer T, Badshah M, Rodarte J et al (2001) Desmin integrates the three-dimensional mechanical properties of muscles. Am J Physiol Cell Physiol 280:C46–C52

    Article  PubMed  CAS  Google Scholar 

  • Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S (2007) Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313(10):2063–2076

    Article  PubMed  CAS  Google Scholar 

  • Criswell DS, Powers SK, Herb RA, Dodd SL (1997) Mechanism of specific force deficit in the senescent rat diaphragm. Respir Physiol 107:149–155

    Article  PubMed  CAS  Google Scholar 

  • Deruisseau KC, Kavazis AN, Deering MA, Falk DJ, Van Gammeren D, Yimlamai T, Ordway GA, Powers SK (2005) Mechanical ventilation induces alterations of the ubiquitin–proteasome pathway in the diaphragm. J Appl Physiol 98:1314–1321

    Article  PubMed  CAS  Google Scholar 

  • Elliott JE, Greising SM, Mantilla CB, Sieck GC (2016) Functional impact of sarcopenia in respiratory muscles. Respir Physiol Neurobiol 226:137–146

    Article  PubMed  CAS  Google Scholar 

  • Garvey SM1, Rajan C, Lerner AP, Frankel WN, Cox GA (2002) The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin. Genomics 79:146–149

    Article  PubMed  CAS  Google Scholar 

  • Gayan-Ramirez G, de Paepe K, Cadot P, Decramer M (2003) Detrimental effects of short-term mechanical ventilation on diaphragm function and IGF-I mRNA in rats. Intensive Care Med 29:825–833

    Article  PubMed  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    Article  PubMed  CAS  Google Scholar 

  • Gosselin LE, Johnson BD, Sieck GC (1994a) Age-related changes in diaphragm muscle contractile properties and myosin heavy chain isoforms. Am J Respir Crit Care Med 150:174–178

    Article  PubMed  CAS  Google Scholar 

  • Gosselin LE, Martinez DA, Vailas AC, Sieck GC (1994b) Passive length-force properties of senescent diaphragm: relationship with collagen characteristics. J Appl Physiol 76:2680–2685

    Article  PubMed  CAS  Google Scholar 

  • Gozal D (2000) Pulmonary manifestations of neuromuscular disease with special reference to Duchenne muscular dystrophy and spinal muscular atrophy. Pediatr Pulmonol 29:141–150

    Article  PubMed  CAS  Google Scholar 

  • Greising SM, Mantilla CB, Gorman BA, Ermilov LG, Sieck GC (2013) Diaphragm muscle sarcopenia in aging mice. Exp Gerontol 48:881–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, Yan Z, Spiegelman BM (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282:30014–30021

    Article  PubMed  CAS  Google Scholar 

  • Hayashi C1, Ono Y, Doi N, Kitamura F, Tagami M, Mineki R et al (2008) Multiple molecular interactions implicate the connectin/titin N2A region as a modulating scaffold for p94/calpain 3 activity in skeletal muscle. J Biol Chem 283:14801–14814

    Article  PubMed  CAS  Google Scholar 

  • Hirofumi M (2013) Age and activity-related changes in the respiratory motor system. J Phys Fitness Sports Med 2:77–83

    Article  Google Scholar 

  • Hoffman EP, Brown RH Jr (1987) Kunkel LMDystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  PubMed  CAS  Google Scholar 

  • Hussain SN, Mofarrahi M, Sigala I, Kim HC, Vassilakopoulos T, Maltais F, Bellenis I, Chaturvedi R, Gottfried SB, Metrakos P, Danialou G, Matecki S, Jaber S, Petrof BJ, Goldberg P (2010) Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med 182:1377–1386

    Article  PubMed  CAS  Google Scholar 

  • Jannapureddy SR, Patel ND, Hwang W, Boriek AM (2003) Genetic models in applied physiology. Merosin deficiency leads to alterations in passive and active skeletal muscle mechanics. J Appl Physiol 94:2524–2533

    Article  PubMed  CAS  Google Scholar 

  • Kelley RC1, Ferreira LF (2017) Diaphragm abnormalities in heart failure and aging: mechanisms and integration of cardiovascular and respiratory pathophysiology. Heart Fail Rev 22:191–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kemp TJ1, Sadusky TJ, Saltisi F, Carey N, Moss J, Yang SY et al (2000) Identification of Ankrd2, a novel skeletal muscle gene coding for a stretch-responsive ankyrin-repeat protein. Genomics 66:229–241

    Article  PubMed  CAS  Google Scholar 

  • Kojic S1, Medeot E, Guccione E, Krmac H, Zara I, Martinelli V et al (2004) The Ankrd2 protein, a link between the sarcomere and the nucleus in skeletal muscle. J Mol Biol 339:313–325

    Article  PubMed  CAS  Google Scholar 

  • Krüger M (2011) Linke WAThe giant protein titin: a regulatory node that integrates myocyte signaling pathways. J Biol Chem 286:9905–99012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Boriek AM (2003) Mechanical stress activates the nuclear factor-κB pathway in skeletal muscle fibers: a possible role in Duchenne muscular dystrophy. FASEB J 17:386–396

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Chaudhry I, Reid MB, Boriek AM (2002) Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J Biol Chem 277:46493–46503

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Khandelwal N, Malya R, Reid MB, Boriek AM (2004) Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. FASEB J 18:102–113

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Lahmers S, Burkart C, Fong C, McNabb M, Witt S et al (2006) Expression of distinct classes of titin isoforms in striated and smooth muscles by alternative splicing, and their conserved interaction with filamins. J Mol Biol 362:664–681

    Article  PubMed  CAS  Google Scholar 

  • Law DJ, Allen DL, Tidball JG (1994) Talin, vinculin, and DRP (utrophin) concentrations are increased at mdx myotendinous junctions following onset of necrosis. J Cell Sci 107:1477–1483

    PubMed  CAS  Google Scholar 

  • Levine S, Biswas C, Dierov J, Barsotti R, Shrager JB, Nguyen T, Sonnad S, Kucharchzuk JC, Kaiser LR, Singhal S, Budak MT (2011) Increased proteolysis, myosin depletion, and atrophic AKT-FOXO signaling in human diaphragm disuse. Am J Respir Crit Care Med 183:483–490

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature; 418:797–801

    Article  PubMed  CAS  Google Scholar 

  • Lopez MA, Mayer U, Hwang W, Taylor T, Hashmi MA, Jannapureddy SR et al (2005) Force transmission, compliance, and viscoelasticity are altered in the α7-integrin-null mouse diaphragm. Am J Physiol Cell Physiol 288:C282–C289

    Article  PubMed  CAS  Google Scholar 

  • Lopez MA, Pardo PS, Cox GA, Boriek AM (2008) Early mechanical dysfunction of the diaphragm in the muscular dystrophy with myositis (Ttn/mdm) model. Am J Physiol Cell Physiol 295:C1092–C1102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Margulies SS, Lei GT, Farkas GA, Rodarte JR (1994) Finite element analysis of stress in the canine diaphragm. J Appl Physiol 76:2070–2075

    Article  PubMed  CAS  Google Scholar 

  • Massa R, Castellani L, Silvestri G, Sancesario G, Bernardi G (1994) Dystrophin is not essential for the integrity of the cytoskeleton. Acta Neuropathol 87:377–384

    Article  PubMed  CAS  Google Scholar 

  • Matecki S, Dridi H, Jung B, Saint N, Reiken SR, Scheuermann V, Mrozek S, Santulli G, Umanskaya A,. Petrof BJ, Jaber S, Marks AR, Lacampagne A (2016) Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation. Proc Natl Acad Sci USA 113:9069–9074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McClung JM, Kavazis AN, DeRuisseau KC, Falk DJ, Deering MA, Lee Y, Sugiura T, Powers SK (2007) Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation–induced atrophy. Am J Respir Crit Care Med 175:150–159

    Article  PubMed  CAS  Google Scholar 

  • McClung JM, Whidden MA, Kavazis AN, Falk DJ, Deruisseau KC, Powers SK (2008) Redox regulation of diaphragm proteolysis during mechanical ventilation. Am J Physiol Regul Integr Comp Physiol 294:R1608–R1617

    Article  PubMed  CAS  Google Scholar 

  • Miller MK, Bang ML, Witt CC, Labeit D, Trombitas C, Watanabe K et al (2003) The muscle ankyrin repeat proteins: CARP, Ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules. J Mol Biol 333:951–964

    Article  PubMed  CAS  Google Scholar 

  • Mohamed JS, Lopez MA, Cox GA, Boriek AM (2010) Anisotropic regulation of Ankrd2 gene expression in skeletal muscle by mechanical stretch. FASEB J 24:3330–3340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohamed JS, Lopez MA, Cox GA, Boriek AM (2013) Ankyrin repeat domain protein 2 and inhibitor of DNA binding 3 cooperatively inhibit myoblast differentiation by physical interaction. J Biol Chem 288:24560–24568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohamed JS, Hajira A, Lopez MA, Boriek AM (2015) Genome-wide mechanosensitive MicroRNA (MechanomiR) screen uncovers dysregulation of their regulatory networks in the mdm mouse model of muscular dystrophy. J Biol Chem 290:24986–25011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelson WB, Smuder AJ, Hudson MB, Talbert EE, Powers CK (2012) Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Crit Care Med 40:1857–1863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ono Y, Torii F, Ojima K, Doi N, Yoshioka K, Kawabata Y et al (2006) Suppressed disassembly of autolyzing p94/CAPN3 by N2A connectin/titin in a genetic reporter system. J Biol Chem 281:18519–18531

    Article  PubMed  CAS  Google Scholar 

  • Pardo PS, Boriek AM (2011) The physiological roles of SIRT1 in skeletal muscles. Aging 3:430–437

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pardo PS, Lopez MA, Boriek AM (2008) FOXO transcription factors are mechanosensitive and their regulation is altered with aging in the respiratory pump. Am J Physiol Cell Physiol 194:C1056–C1066

    Article  CAS  Google Scholar 

  • Pardo PS, Mohamed JS, Lopez MA, Boriek AM (2011) Induction of Sirt1 by mechanical stretch of skeletal muscle through the early response factor EGR1 triggers an antioxidative response. J Biol Chem 86:2559–2566

    Article  CAS  Google Scholar 

  • Patel ND, Jannapureddy SR, Hwang W, Chaudhry I, Boriek AM (2003) Altered muscle force and stiffness of skeletal muscles in alpha-sarcoglycan-deficient mice. Am J Physiol Cell Physiol 284:C962–C968

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Criswell D, Herb RA, Demirel H, Dodd S (1996) Age-related increases in diaphragmatic maximal shortening velocity. J Appl Physiol 80:445–451

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Shanely RA, Coombes JS, Koesterer TJ, McKenzie M, Van Gammeren D, Cicale M, Dodd SL (2002) Mechanical ventilation results in progressive contractile dysfunction in the diaphragm. J Appl Physiol 92:1851–1858

    Article  PubMed  Google Scholar 

  • Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH, Kavazis AN, Smuder AJ (2011) Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med 39:1749–1759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Powers SK, Wiggs MP, Sollanek KJ, Smuder AJ (2013) Ventilator-induced diaphragm dysfunction: cause and effect. Am J Physiol Reg Int Comp Physiol 305:R464-R477

    Article  CAS  Google Scholar 

  • Prakash YS, Sieck GC (1998) Age-related remodeling of neuromuscular junctions on type-identified diaphragm fibers. Muscle Nerve 21:887–895

    Article  PubMed  CAS  Google Scholar 

  • Rasbach KA, Gupta RK, Ruas JL, Wu J, Naseri E, Estall JL (2010) Spiegelman BM PGC-1{alpha} regulates a HIF2{alpha}-dependent switch in skeletal muscle fiber types. Proc Natl Acad Sci USA 107:21866–21871

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanely RA, Zergeroglu MA, Lennon SL, Sugiura T, Yimlamai T, Enns D, Belcastro A, Powers SK (2002) Mechanical ventilation-induced diaphragmatic atrophy is associated with oxidative injury and increased proteolytic activity. Am J Respir Crit Care Med 166:1369–1374

    Article  PubMed  Google Scholar 

  • Smuder AJ, Kurt J. Sollanek KJ, Min K, Nelson BW, Powers SK (2015) Inhibition of FOXO-specific transcription prevents mechanical ventilation-induced diaphragm dysfunction. Crit Care Med 43:e133–e142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spencer MJ, Walsh CM, Dorshkind KA, Rodriguez EM, Tidball JG (1997) Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity. J Clin Invest 99:2745–2751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panattieri RA, Petrof B et al (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–539

    Article  PubMed  CAS  Google Scholar 

  • Street SF (1983) Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol 114:346–364

    Article  PubMed  CAS  Google Scholar 

  • Tidball JG (1991) Force transmission across muscle cell membranes. J Biomech 24:43–52

    Article  PubMed  Google Scholar 

  • Tidball JG (2005) Mechanical signal transduction in skeletal muscle growth and adaptation. J Appl Physiol 98:1900–1908

    Article  PubMed  CAS  Google Scholar 

  • Tidball JG, Albrecht DE, Lokensgard BE, Spencer MJ (1995) Apoptosis precedes necrosis of dystrophin-deficient muscle. J Cell Sci 108:2197–2204

    PubMed  CAS  Google Scholar 

  • Trinick J (1991) Elastic filaments and giant proteins in muscle. Curr Opin Cell Biol 3:112–119

    Article  PubMed  CAS  Google Scholar 

  • Trotter JA (1993) Functional morphology of force transmission in skeletal muscle. A brief review. Acta Anat (Basel) 146:205–222

    Article  CAS  Google Scholar 

  • Vassilakopoulos T, Petrof BJ (2004) Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 169:336–341

    Article  PubMed  Google Scholar 

  • Webster C, Silberstein L, Hays AP, Blau HM (1998) Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 52:503–513

    Article  Google Scholar 

  • Witt CC, Ono Y, Puschmann E, McNabb M, Wu Y, Gotthardt M et al (2004) Induction and myofibrillar targeting of CARP, and suppression of the Nkx2.5 pathway in the MDM mouse with impaired titin-based signaling. J Mol Biol 336:145–154

    Article  PubMed  CAS  Google Scholar 

  • Witt CC, Burkart C, Labeit D, McNabb M, Wu Y, Granzier H et al (2006) Nebulin regulates thin filament length, contractility, and Z-disk structure in vivo. EMBO J 25:3843–3855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zergeroglu MA, McKenzie MJ, Shanely RA, Van Gammeren D, DeRuisseau KC, Powers SK (2003) Mechanical ventilation-induced oxidative stress in the diaphragm. J Appl Physiol 95:1116–1124

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2006) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6:472–483

    Article  CAS  Google Scholar 

  • Zou P, Pinotsis N, Lange S, Song YH, Popov A, Mavridis I et al (2006) Palindromic assembly of the giant muscle protein itin in the sarcomeric Z-disk. Nature 439(7073):229–233

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Institutes of Health Grant HL-63134 from the NHLBI. This work was also supported by the National Science Foundation Grant no. 1714478.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aladin M. Boriek.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardo, P.S., Lopez, M.A., Mohamed, J.S. et al. Anisotropic mechanosensitive pathways in the diaphragm and their implications in muscular dystrophies. J Muscle Res Cell Motil 38, 437–446 (2017). https://doi.org/10.1007/s10974-017-9483-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-017-9483-7

Keywords

Navigation