Skip to main content

Advertisement

Log in

Myopodin is an F-actin bundling protein with multiple independent actin-binding regions

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The assembly of striated muscle myofibrils is a multistep process in which a variety of proteins is involved. One of the first and most important steps in myofibrillogenesis is the arrangement of thin myofilaments into ordered I-Z-I brushes, requiring the coordinated activity of numerous actin binding proteins. The early expression of myopodin prior to sarcomeric α-actinin, as well as its binding to actin, α-actinin and filamin indicate an important role for this protein in actin cytoskeleton remodelling with the precise function of myopodin in this process yet remaining to be resolved. While myopodin was previously described as a protein capable of cross-linking actin filaments into thick bundles upon transient transfections, it has remained unclear whether myopodin alone is capable of bundling actin, or if additional proteins are involved. We have therefore investigated the in vitro actin binding properties of myopodin. High speed cosedimentation assays with skeletal muscle actin confirmed direct binding of myopodin to F-actin and showed that this interaction is mediated by at least two independent actin binding sites, found in all myopodin isoforms identified to date. Furthermore, low-speed cosedimentation assays revealed that not only full length myopodin, but also the fragment containing only the second binding site, bundles microfilaments in the absence of accessory proteins. Ultrastructural analysis demonstrated that this bundling activity resembled that of α-actinin. Biochemical experiments revealed that bundling was not achieved by myopodin’s ability to dimerize, indicating the presence of two individual F-actin binding sites within the second binding segment. Thus full length myopodin contains at least three F-actin binding sites. These data provide further understanding of the mechanisms by which myopodin contributes to actin reorganization during myofibril assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asanuma K, Kim K, Oh J, Giardino L, Chabanis S, Faul C, Reiser J, Mundel P (2005) Synaptopodin regulates the actin-bundling activity of alpha-actinin in an isoform-specific manner. J Clin Invest 115:1188–1198

    PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Short protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Beqqali A, Monshouwer-Kloots J, Monteiro R, Welling M, Bakkers J, Ehler E, Verkleij A, Mummery C, Passier R (2010) CHAP is a newly identified Z-disc protein essential for heart and skeletal muscle function. J Cell Sci 123:1141–1150

    Article  PubMed  Google Scholar 

  • Brennan JP, Wait R, Begum S, Bell JR, Dunn MJ, Eaton P (2004) Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. J Biol Chem 279:41352–41360

    Article  PubMed  CAS  Google Scholar 

  • Chalovich JM, Schroeter MM (2010) Synaptopodin family of natively unfolded, actin binding proteins: physical properties and potential biological functions. Biophys Rev 2:181–189

    Article  CAS  Google Scholar 

  • Cherepanova O, Orlova A, Galkin VE, van der Ven PFM, Fürst DO, Jin JP, Egelman EH (2006) Xin-repeats and nebulin-like repeats bind to F-actin in a similar manner. J Mol Biol 356:714–723

    Article  PubMed  CAS  Google Scholar 

  • Claeys KG, van der Ven PFM, Behin A, Stojkovic T, Eymard B, Dubourg O, Laforet P, Faulkner G, Richard P, Vicart P, Romero NB, Stoltenburg G, Udd B, Fardeau M, Voit T, Fürst DO (2009) Differential involvement of sarcomeric proteins in myofibrillar myopathies: a morphological and immunohistochemical study. Acta Neuropathol 117:293–307

    Article  PubMed  CAS  Google Scholar 

  • De Ganck A, De Corte V, Bruyneel E, Bracke M, Vandekerckhove J, Gettemans J (2009) Down-regulation of myopodin expression reduces invasion and motility of PC-3 prostate cancer cells. Int J Oncol 34:1403–1409

    PubMed  Google Scholar 

  • Esteban S, Moya P, Fernandez-Suarez A, Vidaurreta M, Gonzalez-Peramato P, Sanchez-Carbayo M (2012) Diagnostic and prognostic utility of methylation and protein expression patterns of myopodin in colon cancer. Tumour Biol 33:337–346

    Article  PubMed  CAS  Google Scholar 

  • Faul C, Hüttelmaier S, Oh J, Hachet V, Singer RH, Mundel P (2005) Promotion of importin α-mediated nuclear import by the phosphorylation-dependent binding of cargo protein to 14–3–3. J Cell Biol 169:415–424

    Article  PubMed  CAS  Google Scholar 

  • Faul C, Dhume A, Schecter AD, Mundel P (2007) Protein kinase A, Ca2+/calmodulin-dependent kinase II, and calcineurin regulate the intracellular trafficking of myopodin between the Z-disc and the nucleus of cardiac myocytes. Mol Cell Biol 27:8215–8227

    Article  PubMed  CAS  Google Scholar 

  • Geeves MA, Holmes KC (2005) The molecular mechanism of muscle contraction. Adv Protein Chem 71:161–193

    Article  PubMed  CAS  Google Scholar 

  • Gimona M, Djinović-Carugo K, Kranewitter WJ, Winder SJ (2002) Functional plasticity of CH domains. FEBS Lett 513:98–106

    Article  PubMed  CAS  Google Scholar 

  • Jin JP, Wang K (1991) Nebulin as a giant actin-binding template protein in skeletal muscle sarcomere. Interaction of actin and cloned human nebulin fragments. FEBS Lett 281:93–96

    Article  PubMed  CAS  Google Scholar 

  • Jing L, Liu L, Yu YP, Dhir R, Acquafondada M, Landsittel D, Cieply K, Wells A, Luo JH (2004) Expression of myopodin induces suppression of tumor growth and metastasis. Am J Pathol 164:1799–1806

    Article  PubMed  CAS  Google Scholar 

  • Kolakowski J, Wrzosek A, Dabrowska R (2004) Fesselin is a target protein for calmodulin in a calcium-dependent manner. Biochem Biophys Res Commun 323:1251–1256

    Article  PubMed  CAS  Google Scholar 

  • Kostyukova A, Maeda K, Yamauchi E, Krieger I, Maeda Y (2000) Domain structure of tropomodulin: distinct properties of the N-terminal and C-terminal halves. Eur J Biochem 267:6470–6475

    Article  PubMed  CAS  Google Scholar 

  • Kremerskothen J, Plaas C, Kindler S, Frotscher M, Barnekow A (2005) Synaptopodin, a molecule involved in the formation of the dendritic spine apparatus, is a dual actin/alpha-actinin binding protein. J Neurochem 92:597–606

    Article  PubMed  CAS  Google Scholar 

  • Kruger M, Wright J, Wang K (1991) Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile. J Cell Biol 115:97–107

    Article  PubMed  CAS  Google Scholar 

  • Labeit S, Gibson T, Lakey A, Leonard K, Zeviani M, Knight P, Wardale J, Trinick J (1991) Evidence that nebulin is a protein-ruler in muscle thin filaments. FEBS Lett 282:313–316

    Article  PubMed  CAS  Google Scholar 

  • Leinweber BD, Fredricksen RS, Hoffman DR, Chalovich JM (1999) Fesselin: a novel synaptopodin-like actin binding protein from muscle tissue. J Muscle Res Cell Motil 20:539–545

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Yu YP, Woods J, Cieply K, Gooding B, Finkelstein P, Dhir R, Krill D, Becich MJ, Michalopoulos G, Finkelstein S, Luo JH (2001) Myopodin, a synaptopodin homologue, is frequently deleted in invasive prostate cancers. Am J Pathol 159:1603–1612

    Article  PubMed  CAS  Google Scholar 

  • Linnemann A, van der Ven PFM, Vakeel P, Albinus B, Simonis D, Bendas G, Schenk JA, Micheel B, Kley RA, Fürst DO (2010) The sarcomeric Z-disc component myopodin is a multiadapter protein that interacts with filamin and alpha-actinin. Eur J Cell Biol 89:681–692

    Article  PubMed  CAS  Google Scholar 

  • Lukoyanova N, VanLoock MS, Orlova A, Galkin VE, Wang K, Egelman EH (2002) Each actin subunit has three nebulin binding sites: implications for steric blocking. Curr Biol 12:383–388

    Article  PubMed  CAS  Google Scholar 

  • Mundel P, Heid HW, Mundel TM, Kruger M, Reiser J, Kriz W (1997) Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes. J Cell Biol 139:193–204

    Article  PubMed  CAS  Google Scholar 

  • Obermann WMJ, Gautel M, Weber K, Fürst DO (1997) Molecular structure of the sarcomeric M band: mapping of titin and myosin binding domains in myomesin and the identification of a potential regulatory phosphorylation site in myomesin. EMBO J 16:211–220

    Article  PubMed  CAS  Google Scholar 

  • Obermann WMJ, van der Ven PFM, Steiner F, Weber K, Fürst DO (1998) Mapping of a myosin-binding domain and a regulatory phosphorylation site in M-protein, a structural protein of the sarcomeric M band. Mol Biol Cell 9:829–840

    PubMed  CAS  Google Scholar 

  • Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    Article  PubMed  CAS  Google Scholar 

  • Pacholsky D, Vakeel P, Himmel M, Löwe T, Stradal T, Rottner K, Fürst DO, van der Ven PFM (2004) Xin repeats define a novel actin-binding motif. J Cell Sci 117:5257–5268

    Article  PubMed  CAS  Google Scholar 

  • Perry SV (2001) Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil 22:5–49

    Article  PubMed  CAS  Google Scholar 

  • Pham M, Chalovich JM (2006) Smooth muscle alpha-actinin binds tightly to fesselin and attenuates its activity toward actin polymerization. J Muscle Res Cell Motil 27:45–51

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Kazzaz JA, Helfman DM (1994) Functional properties of non-muscle tropomyosin isoforms. Curr Opin Cell Biol 6:96–104

    Article  PubMed  CAS  Google Scholar 

  • Ruppel KM, Spudich JA (1996) Structure–function analysis of the motor domain of myosin. Annu Rev Cell Dev Biol 12:543–573

    Google Scholar 

  • Sanchez-Carbayo M, Schwarz K, Charytonowicz E, Cordon-Cardo C, Mundel P (2003) Tumor suppressor role for myopodin in bladder cancer: loss of nuclear expression of myopodin is cell-cycle dependent and predicts clinical outcome. Oncogene 22:5298–5305

    Article  PubMed  CAS  Google Scholar 

  • Schroeter M, Chalovich JM (2004) Ca2+-calmodulin regulates fesselin-induced actin polymerization. Biochemistry 43:13875–13882

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Valencia CA, Szostak JW, Dong B, Liu R (2005) Scanning the human proteome for calmodulin-binding proteins. Proc Natl Acad Sci USA 102:5969–5974

    Article  PubMed  CAS  Google Scholar 

  • Sjöblom B, Ylänne J, Djinović-Carugo K (2008) Novel structural insights into F-actin-binding and novel functions of calponin homology domains. Curr Opin Struct Biol 18:702–708

    Article  PubMed  Google Scholar 

  • Spudich JA, Watt S (1971) The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem 246:4866–4871

    PubMed  CAS  Google Scholar 

  • Stradal T, Kranewitter W, Winder SJ, Gimona M (1998) CH domains revisited. FEBS Lett 431:134–137

    Article  PubMed  CAS  Google Scholar 

  • Trinick J (1994) Titin and nebulin: protein rulers in muscle? Trends Biochem Sci 19:405–409

    Article  PubMed  CAS  Google Scholar 

  • van der Ven PFM, Wiesner S, Salmikangas P, Auerbach D, Himmel M, Kempa S, Hayeß K, Pacholsky D, Taivainen A, Schröder R, Carpén O, Fürst DO (2000) Indications for a novel muscular dystrophy pathway. γ-filamin, the muscle-specific filamin isoform, interacts with myotilin. J Cell Biol 151:235–248

    Article  PubMed  Google Scholar 

  • Weins A, Schwarz K, Faul C, Barisoni L, Linke WA, Mundel P (2001) Differentiation- and stress-dependent nuclear cytoplasmic redistribution of myopodin, a novel actin-bundling protein. J Cell Biol 155:393–404

    Article  PubMed  CAS  Google Scholar 

  • Weins A, Schlondorff JS, Nakamura F, Denker BM, Hartwig JH, Stossel TP, Pollak MR (2007) Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc Natl Acad Sci USA 104:16080–16085

    Article  PubMed  CAS  Google Scholar 

  • Yu YP, Luo JH (2006) Myopodin-mediated suppression of prostate cancer cell migration involves interaction with zyxin. Cancer Res 66:7414–7419

    Article  PubMed  CAS  Google Scholar 

  • Yu YP, Luo JH (2011) Phosphorylation and interaction of myopodin by integrin-link kinase lead to suppression of cell growth and motility in prostate cancer cells. Oncogene 30:4855–4863

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mrs. U. Kukulies, A. Jünger-Leif, N. Thum-Schmitz, C. Mirschkorsch and Mr. C. Preiss for technical assistance. This work was supported by the German Research foundation: FOR1228 to D.O.F. and FOR 1352 to D.O.F. and K.D.C., and the German Ministry of Education and Research [MD-NET2, 01GM0887 to P.F.M.v.d.V. and D.O.F.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. M. van der Ven.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linnemann, A., Vakeel, P., Bezerra, E. et al. Myopodin is an F-actin bundling protein with multiple independent actin-binding regions. J Muscle Res Cell Motil 34, 61–69 (2013). https://doi.org/10.1007/s10974-012-9334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-012-9334-5

Keywords

Navigation