Skip to main content
Log in

A mathematical model of fatigue in skeletal muscle force contraction

  • Original Paper
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

The ability for muscle to repeatedly generate force is limited by fatigue. The cellular mechanisms behind muscle fatigue are complex and potentially include breakdown at many points along the excitation–contraction pathway. In this paper we construct a mathematical model of the skeletal muscle excitation–contraction pathway based on the cellular biochemical events that link excitation to contraction. The model includes descriptions of membrane voltage, calcium cycling and crossbridge dynamics and was parameterised and validated using the response characteristics of mouse skeletal muscle to a range of electrical stimuli. This model was used to uncover the complexities of skeletal muscle fatigue. We also parameterised our model to describe force kinetics in fast and slow twitch fibre types, which have a number of biochemical and biophysical differences. How these differences interact to generate different force/fatigue responses in fast- and slow- twitch fibres is not well understood and we used our modelling approach to bring new insights to this relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adrian RH, Peachey LD (1973) Reconstruction of the action potential of frog satorius muscle. J Physiol 235:103–131

    PubMed  CAS  Google Scholar 

  • Allen DG, Westerblad H (2001) Role of phosphate and calcium stores in muscle fatigue. J Physiol 536(3):657–665

    Article  PubMed  CAS  Google Scholar 

  • Allen DG (2004) Skeletal muscle function: role of ionic changes in fatigue, damage and disease. Clin Exp Pharmacol Physiol 31:485–493

    Article  PubMed  CAS  Google Scholar 

  • Almers W (1980) Potassium concentration changes in the transverse tubules of vertebrate skeletal muscle. Fed Proc 39(5):1527–1532

    PubMed  CAS  Google Scholar 

  • Barclay CJ (1989) The causes of alterations in force development and force dynamics in fatigued mouse skeletal muscle. PhD Thesis, University of Auckland

  • Baylor SM, Hollingworth S (1998) Model of sarcomeric calcium movements, including ATP calcium binding and diffusion, during activation of frog skeletal muscle. J Gen Physiol 112:297–316

    Article  PubMed  CAS  Google Scholar 

  • Baylor SM, Hollingworth S (2003) Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle. J Physiol 551(1):125–138

    Article  PubMed  CAS  Google Scholar 

  • Berchtold MW, Brinkmeier H, Muntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265

    PubMed  CAS  Google Scholar 

  • Brown E, Loeb GE (2000) Measured and modeled properties of mammalian skeletal muscle: IV. Dynamics of activation and deactivation. J Muscle Res Cell Motil 21:33–47

    Article  PubMed  CAS  Google Scholar 

  • Bruton JD, Katz A, Lannergren J, Abbate F, Westerblad H (2002) Regulation of myoplasmic Ca2+ in genetically obese (ob/ob) mouse single skeletal muscle fibres. Pflug Arch Eur J Physiol 444:692–699

    Article  CAS  Google Scholar 

  • Bruton J, Tavi P, Aydin J, Westerblad H, Lannergren J (2003) Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. J Physiol 551(1):179–190

    Article  PubMed  CAS  Google Scholar 

  • Cairns SP, Dulhunty AF (1995) High-frequency fatigue in rat skeletal muscle: role of extracellular ion concentrations. Muscle Nerve 18:890–898

    Article  PubMed  CAS  Google Scholar 

  • Cairns SP, Buller SJ, Loiselle DS, Renaud JM (2003) Changes of action potentials and force at lowered [Na+] o in mouse skeletal muscle: implication for fatigue. Am J Physiol-Cell Physiol 285:1131–1141

    Google Scholar 

  • Campbell KB, Razumova MV, Kirkpatrick RD, Slinker BK (2001) Nonlinear myofilament regulatory processes affect frequency-dependent muscle fiber stiffness. Biophys J 81:2278–2296

    Article  PubMed  CAS  Google Scholar 

  • Cannell MB, Allen DG (1984) Model of calcium movements during activation in the sarcomere of frog skeletal muscle. Biophys J 45:913–925

    PubMed  CAS  Google Scholar 

  • Cannon SC, Brown RH, Corey DP (1993) Theoretical reconstruction of myotonia and paralysis caused by incomplete inactivation of sodium channels. Biophys J 65:270–288

    PubMed  CAS  Google Scholar 

  • Chin DXL, Fraser JA, Usher-Smith JA, Skepper JN, Huang CLH (2004) Detubulation abolishes membrane potential stabilization in amphibian skeletal muscle. J Muscle Res Cell Motil 25:379–387

    Article  PubMed  CAS  Google Scholar 

  • Chipperfield AR, Harper AA (2000) Chloride in smooth muscle. Prog Biophys Mol Biol 74:175–221

    Article  PubMed  CAS  Google Scholar 

  • Clausen T (2003) Na+ − K+ pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324

    PubMed  CAS  Google Scholar 

  • Clausen T, Overgaard K, Nielsen OB (2004) Evidence that the leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles. Acta Physiol Scand 180:209–216

    Article  PubMed  CAS  Google Scholar 

  • Cooke R, Franks K, Luciani GB, Pate E (1988) The inhibition of rabbit skeletal muscle contraction by hydrogen ion and phosphate. J Physiol-London 395:77–97

    PubMed  CAS  Google Scholar 

  • Cooke R, Pate E (1985) The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J 48:789–798

    PubMed  CAS  Google Scholar 

  • Danieli-Betto D, Esposito A, Germinario E, Sandona D, Martinello T, Jakubiec-Puka A, Biral D, Betto R (2005) Deficiency of α-sarcoglycan differently affects fast- and slow-twitch skeletal muscles. Am J Physiol–Reg I 289:R1328–R1337

    CAS  Google Scholar 

  • Debold EP, Romatowski J, Fitts RH (2006) The depressive effect of Pi on the force-pCa relationship in skinned single muscle fibers is temperature dependent. Am J Physiol–Cell Physiol 290:1041–1050

    Article  CAS  Google Scholar 

  • Ding J, Wexler AS, Binder-Macleod SA (2000). Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains. J Appl Physiol 88:917–925

    PubMed  CAS  Google Scholar 

  • Dorgan SJ, O’Malley JO (1997) A nonlinear mathematical model of electrically stimulated skeletal muscle. IEEE T Rehabil Eng 5:179–194

    Article  CAS  Google Scholar 

  • Dorgan SJ, O’Malley JO (1998) A mathematical model for skeletal muscle activated by N-let pulse trains. IEEE T Rehabil Eng 6:286–299

    Article  CAS  Google Scholar 

  • Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922

    PubMed  CAS  Google Scholar 

  • Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74(1):49–93

    PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C, Heuser JE, Reese TS, Somlyo AP, Somlyo AV (1978) T-tubule swelling in hypertonic solutions: a freeze substitution study. J Physiol 283:133–140

    PubMed  CAS  Google Scholar 

  • Franzini-Armstrong C, Ferguson DG, Champ C (1988) Discrimination between fast- and slow-twitch fibres of guinea pig skeletal muscle using relative surface density of junctional transverse tubule membrane. J Muscle Res Cell Motil 9:403–414

    Article  PubMed  CAS  Google Scholar 

  • Fraser JA, Huang CLH (2004) A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells. J Physiol 559(2):459–478

    Article  PubMed  CAS  Google Scholar 

  • Fryer MW, Owen VJ, Lamb GD, Stephenson DG (1995) Effects of creatin phosphate and Pi on Ca2+ movements and tension development in rat skinned skeletal muscle fibres. J Physiol 482:123–140

    PubMed  CAS  Google Scholar 

  • Fryer MW, Stephenson DG (1996) Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle. J Physiol 493:357–370

    PubMed  CAS  Google Scholar 

  • Fryer MW, West JM, Stephenson DG (1997) Phosphate transport into the sarcoplasmic reticulum of skinned fibres from rat skeletal muscle. J Muscle Res Cell Motil 18:161–167

    Article  PubMed  CAS  Google Scholar 

  • Fujishiro N, Kawata H (1992) Tetanus responses under rapid bath solution change: electrotonic depolarization of transverse tubules may release Ca2+ from sarcoplasmic reticulum of Rana japonica skeletal muscle. Comp Biochem Physiol A 103(4):661–666

    Article  CAS  Google Scholar 

  • Gollee H, Murray-Smith DJ, Jarvis JC (2001) A nonlinear approach to modeling of electrically stimulated skeletal muscle. IEEE T Biomed Eng 48:406–415

    Article  CAS  Google Scholar 

  • Gonzalez-Serratos H, Somlyo AV, McClellan G, Shuman H, Borrero LM, Somlyo AP (1978) Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle: electron probe analysis. Proc Natl Acad Sci USA 75(3):1329–1333

    Article  PubMed  CAS  Google Scholar 

  • Hatze H (1977) A myocybernetic control model of skeletal muscle. Biol Cybern 25:103–119

    Article  PubMed  CAS  Google Scholar 

  • Henneberg K, Roberge FA (1997) Simulation of propagation along an isolated skeletal muscle fiber in an isotropic volume conductor. Ann Biomed Eng 25:15–28

    Article  Google Scholar 

  • Hodgkin AL, Horowicz P (1957) The differential action of hypertonic solutions on the twitch and action potential of a muscle fibre. J Physiol-London 136:17

    Google Scholar 

  • Hollingworth S, Soeller C, Baylor SM, Cannell MB (2000) Sarcomeric calcium gradients during activation of frog skeletal muscle fibres imaged with confocal and two-photon microscopy. J Physiol 526:551–560

    Article  PubMed  CAS  Google Scholar 

  • Juel C (1988) Muscle action potential propagation velocity changes during activity. Muscle Nerve 11:714–719

    Article  PubMed  CAS  Google Scholar 

  • Kandarian SC, Boushel RC, Schulte LM (1991) Elevated interstitial fluid volume in rat soleus muscles by hindlimb unweighting. J App Physiol 71(3):910–914

    CAS  Google Scholar 

  • Kawai M, Saeki Y, Zhao Y (1993) Crossbridge scheme and kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the Ferret. Circ Res 73(1):35–50

    PubMed  CAS  Google Scholar 

  • Keener J, Sneyd J (1998) Mathematical physiology. Springer-Verlag, New York, p. 55

    Google Scholar 

  • Kristensen M, Hansen T, Juel C (2006) Membrane proteins involved in potassium shifts during muscle activity and fatigue. Am J Physiol 290:766–722

    Google Scholar 

  • Lamb GD (2002) Excitation-contraction coupling and fatigue mechanisms in skeletal muscle: studies with mechanically skinned fibres. J Muscle Res Cell Motil 23:81–91

    Article  PubMed  CAS  Google Scholar 

  • Luff AR, Atwood HL (1972) Membrane properties and contraction of single muscle fibers in the mouse. Am J Physiol 222(6):1435–1440

    PubMed  CAS  Google Scholar 

  • Otazu GH, Futami R, Hoshimiya N (2001) A muscle activation model of variable stimulation frequency response and stimulation history, based on positive feedback in calcium dynamics. Biol Cyber 84:193–206

    Article  CAS  Google Scholar 

  • Pierno S, Desaphy J, Liantonio A, De Bellis M, Bianco G, De Luca A, Frigeri A, Paola Nicchia B, Svelto M, Leoty C, George AL Jr, Conte Camerino D (1992) Effect of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse. Brain 125:1510–1521

    Article  Google Scholar 

  • Posterino GS, Fryer MW (1998) Mechanisms underlying phosphate-induced failure of Ca2+ release in single skinned skeletal muscle fibres of the rat. J Physiol 512(1):97–108

    Article  PubMed  CAS  Google Scholar 

  • Razumova MV, Bukatina AE, Campbell KB (2000) Different myofilament nearest-neighbour interactions have distinctive effects on contractile behaviour. Biophys J 78:3120–3137

    PubMed  CAS  Google Scholar 

  • Riener R, Quintern J (1997) A physiologically based model of muscle activation verified by electrical stimulation. Bioelectroch Bioener 43:257–264

    Article  CAS  Google Scholar 

  • Rios E, Karhanek M, Ma J, Gonzalez A (1993) An allosteric model of the molecular interactions of excitation-contraction coupling in skeletal muscle. J Gen Physiol 102:449–481

    Article  PubMed  CAS  Google Scholar 

  • Rios E, Stern MD (1997) Calcium in close quarters: microdomain feedback in excitation-contraction coupling and other cell biological phenomena. Ann Rev Biophys Biomol Struct 26:47–82

    Article  CAS  Google Scholar 

  • Rome LC (2006) Design and function of superfast muscles: new insights into the physiology of skeletal muscle. Ann Rev Physiol 68:193–221

    Article  CAS  Google Scholar 

  • Ruff RL (1989) Calcium sensitivity of fast- and slow-twitch human muscle fibres. Muscle Nerve 12:32–37

    Article  PubMed  CAS  Google Scholar 

  • Ruff RL, Whittlesey D (1993) Na+ currents near and away from endplates on human fast and slow twitch muscle fibres. Muscle Nerve 16:922–929

    Article  PubMed  CAS  Google Scholar 

  • Sejersted OM, Sjogaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80(4):1411–1481

    PubMed  CAS  Google Scholar 

  • Shorten PR, Soboleva TK (2007) Anomalous ion diffusion within skeletal muscle transverse tubule networks. Theor Biol Med Model 4:18

    Article  PubMed  CAS  Google Scholar 

  • Somlyo, AV, Gonzalez-Serratos H, McClellan G, Shuman H, Borrero LM, Somlyo AP (1978) Electron probe analysis of the sarcoplasmic reticulum and vacuolated t-tubule system of fatigued frog muscle. Ann NY Acad Sci 307:232–235

    Article  CAS  Google Scholar 

  • Stephenson DG, Lamb GD, Stephenson GMM (1998) Events of the excitation-contraction-relaxation (E-C-R) cycle in fast- and slow-twitch mammalian muscle fibres relevant to muscle fatigue. Acta Physiol Scand 162:229–245

    Article  PubMed  CAS  Google Scholar 

  • Wallinga W, Meijer SL, Alberink MJ, Vliek M, Wienk ED, Ypey DL (1999) Modelling action potentials and membrane currents of mammalian skeletal muscle fibres in coherence with potassium concentration changes in the T-tubular system. Eur Biophys J 28:317–329

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H, Allen DG, Bruton JD, Andrade FH, Lannergren J (1998) Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue. Acta Physiol Scand 162:253–260

    Article  PubMed  CAS  Google Scholar 

  • Westerblad H, Lee JA, Lamb AG, Bolsover SR, Allen DG (1990) Spatial gradients in intracellular calcium in skeletal muscle during fatigue. Pflug Arch-Eur J Physiol 415:734–740

    Google Scholar 

  • Westerblad H, Lee JA, Lannergren J, Allen DG (1991) Cellular mechanisms of fatigue in skeletal muscle. Am J Physiol 261:C195–C209

    PubMed  CAS  Google Scholar 

  • Westerblad H, Allen DG, Lannergren J (2002) Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 17:17–21

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Shorten.

Appendix 1 Model Equations

Appendix 1 Model Equations

Sarcolemma and t-tubule action potential generation

Table 1 Model parameter values and definitions

Two compartment model

$$\begin{aligned} & {\text{I}}_{\text{T}} = ({\text{v}}_{\text{s}} - {\text{v}}_{\text{t}} )/{\text{R}}_{\text{a}} {\text{10}}^{\text{3}} \,\mu {\text{A}}/{\text{cm}}^{\text{2}} \,{\text{(access}}\,{\text{current)}} \\ & \frac{{{\text{dv}}_{\text{s}} }}{{{\text{dt}}}} = - \left( {{\text{I}}_{\text{s}}^{{\text{ionic}}} + {\text{I}}_{\text{T}} } \right)/{\text{C}}_{\text{m}} \,{\text{mV}}/{\text{ms}}\,{\text{(sarcolemma}}\,{\text{membrane}}\,{\text{voltage)}} \\ & \frac{{{\text{dv}}_{\text{t}} }}{{{\text{dt}}}} = - \left( {{\text{I}}_{\text{t}}^{{\text{ionic}}} - {\text{I}}_{\text{T}} {\text{/}}\gamma } \right)/{\text{C}}_{\text{m}} \,{\text{mV/ms}}\,{\text{(t - tubule}}\,{\text{membrane}}\,{\text{voltage)}} \\ & \left[ {\frac{{{\text{dh}}_{\text{s}} }}{{{\text{dt}}}},\frac{{{\text{dm}}_{\text{s}} }}{{{\text{dt}}}},\frac{{{\text{dn}}_{\text{s}} }}{{{\text{dt}}}},\frac{{{\text{dh}}_{\text{s}}^{\text{K}} }}{{{\text{dt}}}},\frac{{{\text{dS}}_{\text{s}} }}{{{\text{dt}}}},{\text{I}}^{{\text{C1}}} ,{\text{I}}^{{\text{IR}}} ,{\text{I}}^{{\text{DR}}} ,{\text{I}}^{{\text{Na}}} ,{\text{I}}^{{\text{NaK}}} } \right] = {\text{Z}}_{\text{s}} \left( {{\text{v}}_{\text{s}} ,{\text{h}}_{\text{s}} ,{\text{m}}_{\text{s}} ,{\text{n}}_{\text{s}} ,{\text{h}}_{\text{s}}^{\text{K}} ,{\text{S}}_{\text{s}} ,{\text{K}}_{\text{i}} ,{\text{K}}_{\text{e}} ,{\text{Na}}_{\text{i}} ,{\text{Na}}_{\text{e}} } \right) \\ & {\text{I}}_{\text{s}}^{{\text{ionic}}} = {\text{I}}^{{\text{C1}}} + {\text{I}}^{{\text{IR}}} + {\text{I}}^{{\text{DR}}} + {\text{I}}^{{\text{Na}}} + {\text{I}}^{{\text{NaK}}} - {\text{I}}_{{\text{app}}} {\text{(t}};{\text{t}}_{{\text{app}}} {\text{)}}\,\mu {\text{A}}/{\text{cm}}^{\text{2}} \,{\text{(sarcolemma}}\,{\text{current)}} \\ & \left[ {\frac{{{\text{dh}}_{\text{t}} }}{{{\text{dt}}}},\frac{{{\text{dm}}_{\text{t}} }}{{{\text{dt}}}},\frac{{{\text{dn}}_{\text{t}} }}{{{\text{dt}}}},\frac{{{\text{dh}}_{\text{t}}^{\text{K}} }}{{{\text{dt}}}},\frac{{{\text{dS}}_{\text{t}} }}{{{\text{dt}}}},{\text{I}}_{\text{t}}^{{\text{Cl}}} ,{\text{I}}_{\text{t}}^{{\text{IR}}} ,{\text{I}}_{\text{t}}^{{\text{DR}}} ,{\text{I}}_{\text{t}}^{{\text{Na}}} ,{\text{I}}_{\text{t}}^{{\text{NaK}}} } \right] = {\text{Z}}_{\text{t}} \left( {{\text{v}}_{\text{t}} ,{\text{h}}_{\text{t}} ,{\text{m}}_{\text{t}} ,{\text{n}}_{\text{t}} ,{\text{h}}_{\text{t}}^{\text{K}} ,{\text{S}}_{\text{t}} ,{\text{K}}_{\text{i}} ,{\text{K}}_{\text{t}} ,{\text{Na}}_{\text{i}} ,{\text{Na}}_{\text{t}} } \right) \\ & {\text{I}}_{\text{t}}^{{\text{ionic}}} = {\text{I}}_{\text{t}}^{{\text{Cl}}} + {\text{I}}_{\text{t}}^{{\text{IR}}} + {\text{I}}_{\text{t}}^{{\text{DR}}} + {\text{I}}_{\text{t}}^{{\text{Na}}} + {\text{I}}_{\text{t}}^{{\text{NaK}}} \mu {\text{A}}/{\text{cm}}^{\text{2}} \,({\text{t - tubule}}\,{\text{current}}) \\ & \frac{{{\text{dK}}_{\text{i}} }}{{{\text{dt}}}} = - {\text{f}}_{\text{T}} \left( {{\text{I}}_{\text{t}}^{{\text{IR}}} + {\text{I}}_{\text{t}}^{{\text{DR}}} - {\text{2I}}_{\text{t}}^{{\text{NaK}}} + {\text{I}}_{{\text{rest}}}^{\text{K}} } \right)/({\text{1000F}}\xi ) - \left( {{\text{I}}^{{\text{IR}}} + {\text{I}}^{{\text{DR}}} - {\text{2I}}^{{\text{NaK}}} + {\text{I}}_{{\text{rest}}}^{\text{K}} } \right)/({\text{1000F}}\xi _2 )\,{\text{mM}}/{\text{ms}}\,{\text{(intracellular}}\,{\text{[K}}^ + {\text{])}} \\ & \frac{{{\text{dK}}_{\text{t}} }}{{{\text{dt}}}} = \left( {{\text{I}}_{\text{t}}^{{\text{IR}}} + {\text{I}}_{\text{t}}^{{\text{DR}}} - {\text{2I}}_{\text{t}}^{{\text{NaK}}} + {\text{I}}_{{\text{rest}}}^{\text{K}} } \right)/({\text{1000F}}\xi ) - ({\text{K}}_{\text{t}} - {\text{K}}_{\text{e}} )/\tau _{\text{K}} \,{\text{mM}}/{\text{ms}}\,({\text{t - tubule}}\,{\text{[K}}^ + ]) \\ & \frac{{{\text{dK}}_{\text{e}} }}{{{\text{dt}}}} = \left( {{\text{I}}^{{\text{IR}}} {\text{ + I}}^{{\text{DR}}} - {\text{2I}}^{{\text{NaK}}} + {\text{I}}_{{\text{rest}}}^{\text{K}} } \right)/({\text{1000F}}\xi _3 ) + ({\text{K}}_{\text{t}} - {\text{K}}_{\text{e}} )/\tau _{{\text{K}}_{\text{2}} } \,{\text{mM}}/{\text{ms}}\,({\text{interstitial}}\,{\text{[K}}^ + {\text{]}}) \\ & {\text{dNa}}_{\text{i}} /{\text{dt}} = - {\text{f}}_{\text{T}} \left( {{\text{I}}_{\text{t}}^{{\text{Na}}} + {\text{3I}}_{\text{t}}^{{\text{NaK}}} + {\text{I}}_{{\text{rest}}}^{{\text{Na}}} } \right)/({\text{1000F}}\xi ) - \left( {{\text{I}}^{{\text{Na}}} {\text{ + 3I}}^{{\text{NaK}}} + {\text{I}}_{{\text{rest}}}^{{\text{Na}}} } \right)/({\text{1000F}}\xi _2 )\,{\text{mM/ms}}\,({\text{intracellular}}\,{\text{[Na}}^ + {\text{]}}) \\ & {\text{dNa}}_{\text{t}} /{\text{dt}} = \left( {{\text{I}}_{\text{t}}^{{\text{Na}}} {\text{ + 3I}}_{\text{t}}^{{\text{NaK}}} + {\text{I}}_{{\text{rest}}}^{{\text{Na}}} } \right)/({\text{1000F}}\xi ) - ({\text{Na}}_{\text{t}} - {\text{Na}}_{\text{e}} )/\tau _{{\text{Na}}} \,{\text{mM}}/{\text{ms}}\,({\text{t - tubule}}\,{\text{[Na}}^ + ]) \\ & {\text{dNa}}_{\text{e}} /{\text{dt}} = \left( {{\text{I}}^{{\text{Na}}} {\text{ + 3I}}^{{\text{NaK}}} + {\text{I}}_{{\text{rest}}}^{{\text{Na}}} } \right)/({\text{1000F}}\xi _3 ) + ({\text{Na}}_{\text{t}} - {\text{Na}}_{\text{e}} )/\tau _{{\text{Na}}_{\text{2}} } \,{\text{mM}}/{\text{ms}}\,({\text{interstitial}}\,{\text{[Na}}^ + {\text{]}}) \\ \end{aligned} $$
(1)

where the function Zs is defined by

$$ \begin{aligned}&\left[\frac{{{\hbox{dh}}}}{{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dm}}}}{{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dn}}}}{{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dh}}^{{\rm {K}}} }}{{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dS}}}}{{{\hbox{dt}}}}{\hbox{,I}}^{{{\rm {Cl}}}} {\hbox{,I}}^{{{\rm {IR}}}} {\hbox{,I}}^{{{\rm {DR}}}} {\hbox{,I}}^{{{\rm {Na}}}} {\hbox{,I}}^{{{\rm {NaK}}}}\right] ={\hbox{Z}}^{{}}_{{\rm {s}}} {\hbox{(V,h,m,n,h}}^{{\rm {K}}} {\hbox{,S,K}}_{{\rm {i}}} {\hbox{,K}}_{{\rm {o}}} {\hbox{,Na}}_{{\rm {i}}} {\hbox{,Na}}_{{\rm {o}}} {\hbox{)}}\\ &\alpha _{{\rm {h}}}=\bar{\alpha}_{\rm h} \hbox{exp}(-(\hbox{V}-\hbox{V} _{\rm h})/\hbox{K}_{\alpha_{\rm h}}) \hbox{ ms}^{-1}\\ &\beta_{\rm h}=\bar{\beta}_{h}{/(1 + \exp(- (\hbox{V} - \hbox{V}}_{{\rm {h}}} {\hbox{)/K}}_{{\beta_{{\rm {h}}}}}{\hbox{)) ms}}^{{{\rm {-1}}}}\\ &\alpha _{{\rm {m}}}=\bar{\alpha}_{{\rm {m}}}{(\hbox{V} - \hbox{V}}_{{\rm {m}}} {)/(1 - \exp(- (\hbox{V} - {V}}_{{\rm {m}}} {\hbox{)/K}}_{{\alpha _{{\rm {m}}} }} {\hbox{)) ms}}^{{{\rm {-1}}}}\\ &\beta _{{\rm {m}}}=\bar{\beta}_{m} {\exp(- (\hbox{V} - \hbox{V}}_{{\rm {m}}} {\hbox{)/K}}_{{\beta _{{\rm {m}}} }} {\hbox{) ms}}^{{{\rm {-1}}}}\\ &\alpha _{{\rm {n}}} =\bar{\alpha}_{{\rm {n}}} {\hbox{(V} - \hbox{V}}_{{\rm {n}}} {)/(1 - \exp(- (\hbox{V} - {V}}_{{\rm {n}}} {\hbox{)/K}}_{{\alpha _{{\rm {n}}} }} {\hbox{)) ms}}^{{{\rm {-1}}}}\\ &\beta _{{\rm {n}}} =\bar{\beta}_{n} {\exp(- (\hbox{V} - \hbox{V}}_{{\rm {n}}} {\hbox{)/K}}_{{\beta _{{\rm {n}}} }} {\hbox{) ms}}^{{{\rm {-1}}}}\\ &{\hbox{h}}^{{\rm {K}}}_{\infty}{=1/(1 + \exp((\hbox{V} - \hbox{V}}_{{{\rm {h}}^{\infty }_{{\rm {K}}} }} {\hbox{)/A}}_{{{\rm {h}}^{\infty }_{{\rm {K}}} }} {\hbox{)) }}\\ &{\hbox{S}}^{\infty } { = 1/(1 + \exp((\hbox{V} - \hbox{V}}_{{{\rm {S}}^{\infty } }} {\hbox{)/A}}_{{{\rm {S}}^{\infty } }} {\hbox{)) }}\\ &\tau _{{{\rm {h}}^{{\rm {K}}} }} {\hbox{ = 1000}} \times {\exp(- (\hbox{V} + 40)/25}{\hbox{.75) ms}}\\ &\tau _{S} {\hbox{ = 8571/(0}}{\hbox{.2 + 5}}{\hbox{.65((V + V}}_{\tau } {\hbox{)/100)}}^{{\rm {2}}} {\hbox{) ms}}\\ &{\hbox{a} = 1/(1 + \exp((\hbox{V} - \hbox{V}}_{{\rm {a}}} {\hbox{)/A}}_{{\rm {a}}} {\hbox{))}}\\ \end{aligned} $$
(2)
$$\begin{aligned}&{\hbox{E}}_{\rm K}{\hbox{ = RT/(+ F)log(K}}_{{\rm {o}}}{\hbox{/K}}_{{\rm {i}}} {\hbox{) mV (K}}^{ + } {\hbox{ Nernst potential)}}\\ &{\hbox{E}}_{{{\rm {Cl}}}} {\hbox{ = E}}_{{\rm {K}}}{\hbox{(Cl}}^{{-}} {\hbox{ Nernst potential)}}\\&{\hbox{E}}_{{{\rm {Na}}}} {\hbox{ = RT/(+ F)log(Na}}_{{\rm {o}}}{\hbox{/Na}}_{{\rm {i}}} {\hbox{) mV (Na}}^{ + } {\hbox{ Nernst potential)}}\\ &{\hbox{Cl}}_{{\rm {i}}} = {\hbox{(128}} +{\hbox{5}} \times {\hbox{5}}{\hbox{.7)/(5}} + {{\exp((}} -{\hbox{FE}}_{{\rm {K}}} {\hbox{)/(RT)))}}\quad{\hbox{(Intracellular [Cl}}^{-} {\hbox{])}}\\ &{\hbox{Cl}}_{{\rm {o}}} = {\hbox{(128}}+ {\hbox{5}} \times {\hbox{5}}{.7) - \hbox{5Cl}}_{{\rm {i}}}\quad{\hbox{(Extracellular [Cl}}^{-} {\hbox{])}}\\ &{\hbox{J}}_{{{\rm{Cl}}}} = {\hbox{V(Cl}}_{{\rm {i}}} - {\hbox{Cl}}_{{\rm {o}}}{\exp\hbox{((FV)/(RT))})/(1 - \exp\hbox{((FV)/(RT))})}\\ &{\hbox{J}}_{{\rm{K}}} = {\hbox{V(K}}_{{\rm {i}}} - {\hbox{K}}_{{\rm {o}}}{\exp(} - {\hbox{(FV)/(RT)}))/(1 - \exp(} -{\hbox{(FV)/(RT)))}}\\ &{\hbox{J}}_{{{\rm {Na}}}} ={\hbox{V(Na}}_{{\rm {i}}} - {\hbox{Na}}_{{\rm {o}}} {\exp(} -{\hbox{(FV)/(RT)}))/(1 - \exp(} - {\hbox{(FV)/(RT)))}}\\&{\hbox{g}}_{{{\rm {Cl}}}} =\bar{\hbox{g}}_{{{\rm {Cl}}}} {\hbox{a}}^{4}\,{\hbox{mS/cm}}^{{\rm {2}}}\\ &{\hbox{K}}_{{\rm {R}}} {\hbox{ =K}}_{{\rm {o}}} {\exp(- }\delta {\hbox{E}}_{{\rm {K}}}{\hbox{F/(RT))\,mM}}\\ &\bar{\hbox{g}}_{{{\rm {IR}}}} {\hbox{ = G}}_{{\rm{K}}} {\hbox{K}}^{{\rm {2}}}_{{\rm {R}}} {\hbox{/(K}}_{{\rm {K}}}{\hbox{ + K}}^{{\rm {2}}}_{{\rm {R}}} {\hbox{)\,mS/cm}}^{{\rm {2}}}\\&{\hbox{y}=1 - (1 + (\hbox{K}}_{{\rm {S}}} {\hbox{/(S}}^{{\rm {2}}}_{{\rm{i}}} {\exp(2(1 - }\delta {\hbox{)VF/(RT))))}} \times{\hbox{(1 + K}}^{{\rm {2}}}_{{\rm {R}}} {\hbox{/K}}_{{\rm {K}}}{\hbox{))}}^{{{\rm {-1}}}}\\ &{\hbox{g}}_{{{\rm{IR}}}}=\bar{\hbox{g}}_{{{\rm {IR}}}} {\hbox{y\,mS/cm}}^{{\rm {2}}}\\&{\hbox{g}}_{{{\rm {DR}}}}=\bar{\hbox{g}}_{{\rm {K}}} {\hbox{n}}^{4}{\hbox{h}}^{{\rm {K}}} {\hbox{\,mS/cm}}^{{\rm {2}}}\\&{\hbox{g}}_{{{\rm {Na}}}}=\bar{\hbox{g}}_{{{\rm {Na}}}} {\hbox{m}}^{{\rm{3}}} {\hbox{hS\,mS/cm}}^{{\rm {2}}}\\ &{\hbox{I}}_{{{\rm {Cl}}}}=\hbox{g}_{{{\rm {Cl}}}} {\hbox{(J}}_{{{\rm{Cl}}}}/45)\,\hbox{ }\mu\hbox{A/cm}^{\rm 2}\,{\hbox{(Cl}}^{{\rm {-}}}\,{\hbox{current)}}\\ &{\hbox{I}}_{{{\rm {IR}}}}=\hbox{g}_{{{\rm{IR}}}} {\hbox{(J}}_{{\rm {K}}} {\hbox{/50)H(J}}_{{\rm {K}}}/50)\,\mu\hbox{A/cm}^{\rm 2}\hbox{ }(\hbox{K}^{+}{\hbox{\,IR current)}}\\&{\hbox{I}}_{{{\rm {DR}}}}=\hbox{g}_{{{\rm\,{DR}}}}{\hbox{(J}}_{{\rm {K}}}/50)\,\mu{\hbox{A/cm}}^{{\rm {2}}}\,{\hbox{(K}}^{ + } {\hbox{\,DR current)}}\\ &{\hbox{I}}_{{{\rm{Na}}}}=\hbox{g}_{{{\rm {Na}}}} {\hbox{(J}}_{{{\rm {Na}}}}/75)\,\mu{\hbox{A/cm}}^{{\rm {2}}}\,({\hbox{Na}}^{+}\,{\hbox{current)}}\\&\hbox{H(t)}={\left\{ \begin{array}{l} 1, t > 0\\ 0, t < 0\\\end{array} \right. }\\ \end{aligned} $$
(3)
$$ \begin{aligned} & \sigma=\frac{1} {7}{\hbox{(exp(Na}}_{{\rm {o}}}{\hbox{/67}}{.3) - 1)}\\ & {\hbox{f}}_{{\rm {1}}} {\hbox{ = (1 + 0}}{.12\exp(- 0} {\hbox{.1VF/(RT)) + 0}}{\hbox{.04}}\sigma {\exp(- \hbox{VF/(RT)))}}^{{{\rm {-1}}}}\\ & \bar{\hbox{I}}_{{{\rm {NaK}}}} ={\hbox{F}}\bar{\hbox{J}}_{{{\rm {NaK}}}} {\hbox{/((1 + K}}_{{{\rm {mK}}}} {\hbox{/K}}_{{\rm {o}}} {\hbox{)}}^{{\rm {2}}} \times {\hbox{(1 + K}}_{{{\rm {mNa}}}} {\hbox{/Na}}_{{\rm {i}}} {\hbox{)}}^{{\rm {3}}})\mu {\hbox{A/cm}}^{2}\\ & {\hbox{I}}_{{{\rm {NaK}}}}=\bar{\hbox{I}}_{{{\rm {NaK}}}}{\hbox{f}}_{1}\,\mu \hbox{A/cm}^{2}\hbox{ (Na-K exchanger)}\\ & \frac{{{\hbox{dh}}}} {{{\hbox{dt}}}}=\alpha _{{\rm {h}}} {(1-\hbox{h}) - } \beta _{{\rm {h}}} {\hbox{h (Na inactivation gating variable)}}\\ & \frac{{{\hbox{dm}}}} {{{\hbox{dt}}}}=\alpha _{{\rm {m}}} {(1 - \hbox{m}) - }\beta _{{\rm {m}}} {\hbox{m (Na activation gating variable)}}\\ & \frac{{{\hbox{dn}}}} {{{\hbox{dt}}}}=\alpha _{{\rm {n}}} {(1 - \hbox{n}) - }\beta _{{\rm {n}}} {\hbox{n (K-DR activation gating variable)}}\\ & \frac{{{\hbox{dh}}^{{\rm {K}}} }} {{{\hbox{dt}}}}{\hbox{ = (h}}^{{\rm {K}}}_{\infty } {-\hbox{h}}^{{\rm {K}}} {\hbox{)/}}\tau _{{{\rm {h}}^{{\rm {K}}} }} {\hbox{ (K-DR inactivation gating variable)}}\\ & \frac{{{\hbox{dS}}}} {{{\hbox{dt}}}}{\hbox{ = (S}}_{\infty } {-\hbox{S)/}}\tau _{{\rm {S}}} {\hbox{ (Na very slow inactivation gating variable)}}\\ \end{aligned} $$
(4)

and the function Zt is defined by

$$ \begin{aligned} &\left[\frac{{{\hbox{dh}}_{{\rm{t}}} }} {{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dm}}_{{\rm {t}}} }}{{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dn}}_{{\rm {t}}} }}{{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dh}}^{{\rm {K}}}_{{\rm {t}}}}} {{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dS}}_{{\rm {t}}} }}{{{\hbox{dt}}}}{\hbox{,I}}^{{{\rm {Cl}}}}_{{\rm {t}}}{\hbox{,I}}^{{{\rm {IR}}}}_{{\rm {t}}} {\hbox{,I}}^{{{\rm{DR}}}}_{{\rm {t}}} {\hbox{,I}}^{{{\rm {Na}}}}_{{\rm {t}}}{\hbox{,I}}^{{{\rm {NaK}}}}_{{\rm {t}}} \right] ={\hbox{ Z}}^{{}}_{{\rm{t}}} {\hbox{(v}}_{{\rm {t}}} {\hbox{,h}}_{{\rm {t}}}{\hbox{,m}}_{{\rm {t}}} {\hbox{,n}}_{{\rm {t}}} {\hbox{,h}}^{{\rm{K}}}_{{\rm {t}}} {\hbox{,S}}_{{\rm {t}}} {\hbox{,K}}_{{\rm {i}}}{\hbox{,K}}_{{\rm {t}}} {\hbox{,Na}}_{{\rm {i}}} {\hbox{,Na}}_{{\rm{t}}} {\hbox{)}}\\ &\left[\frac{{{\hbox{dh}}_{{\rm {t}}} }}{{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dm}}_{{\rm {t}}} }}{{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dn}}_{{\rm {t}}} }}{{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dh}}^{{\rm {K}}}_{{\rm {t}}}}} {{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dS}}}}{{{\hbox{dt}}}}{\hbox{,I}}^{{{\rm {Cl}}}} {\hbox{,I}}^{{{\rm {IR}}}}{\hbox{,I}}^{{{\rm {DR}}}} {\hbox{,I}}^{{{\rm {Na}}}}{\hbox{,I}}^{{{\rm {NaK}}}} \right] = {\hbox{Z}}^{{}}_{{\rm {s}}}{\hbox{(v}}_{{\rm {t}}} {\hbox{,h}}_{{\rm {t}}} {\hbox{,m}}_{{\rm{t}}} {\hbox{,n}}_{{\rm {t}}} {\hbox{,h}}^{{\rm {K}}}_{{\rm {t}}}{\hbox{,S}}_{{\rm {t}}} {\hbox{,K}}_{{\rm {i}}} {\hbox{,K}}_{{\rm{t}}} {\hbox{,Na}}_{{\rm {i}}} {\hbox{,Na}}_{{\rm {t}}} {\hbox{)}}\\& \eta _{{{\rm {Cl}}}}=0{\hbox{.1 (Cl channel density in t-tubules relative to sarcolemma)}}\\ & \eta _{{{\rm {IR}}}}=1.0{\hbox{ (K{-}IR channel density in t-tubules relative to sarcolemma)}}\\ &\eta _{{{\rm {DR}}}}=0{\hbox{.45 (K{-}DR channel density in t-tubules relative to sarcolemma)}}\\ & \eta _{{{\rm{Na}}}}=0{\hbox{.1 (Na channel density in t-tubules relative to sarcolemma)}}\\ & \eta _{{{\rm {NaK}}}}=0{\hbox{.1 (Na/K exchanger density in t-tubules relative to sarcolemma)}}\\&{\hbox{I}}^{{{\rm {Cl}}}}_{{\rm {t}}} =\eta _{{{\rm {Cl}}}}{\hbox{I}}^{{{\rm {Cl}}}} \hbox{ }\mu\hbox{A/cm}^{2}\\ &{\hbox{I}}^{{{\rm{IR}}}}_{{\rm {t}}} =\eta _{{{\rm {IR}}}} {\hbox{I}}^{{{\rm{IR}}}}\hbox{ }\mu\hbox{A/cm}^{2}\\ &{\hbox{I}}^{{{\rm {DR}}}}_{{\rm{t}}} =\eta _{{{\rm {DR}}}} {\hbox{I}}^{{{\rm{DR}}}}\hbox{ }\mu\hbox{A/cm}^{2}\\ &{\hbox{I}}^{{{\rm {Na}}}}_{{\rm{t}}} =\eta _{{{\rm {Na}}}} {\hbox{I}}^{{{\rm{Na}}}}\hbox{ }\mu\hbox{A/cm}^{2}\\ &{\hbox{I}}^{{{\rm {NaK}}}}_{{\rm{t}}} =\eta _{{{\rm {NaK}}}} {\hbox{I}}^{{{\rm{NaK}}}}\hbox{ }\mu\hbox{A/cm}^{2}\\ \end{aligned} $$
(5)

PDE model

$$ \begin{aligned} & \bar{G}_{L} = G_{L} \tau f_{T} \quad \hbox{mS/cm}\\ &{\hbox{D}}_{{\rm {s}}}=1000 \times (R_{s}/(2(R_{i} + R_{e})))/C_{m}\quad {\hbox{cm}}^{{\rm {2}}} {\hbox{/ms}}\\ &D_{t}=\bar{G}_{L}/(C_{m} f_{T}/\xi)\quad{\hbox{cm}}^{{\rm {2}}} {\hbox{/ms}}\\ &\left[\frac{{{\hbox{dh}}_{{\rm {s}}} }} {{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dm}}_{{\rm {s}}} }} {{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dn}}_{{\rm {s}}} }} {{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dh}}^{{\rm {K}}}_{{\rm {s}}} }} {{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dS}}_{{\rm {s}}} }} {{{\hbox{dt}}}}{\hbox{,I}}^{{{\rm {Cl}}}}{\hbox{,I}}^{{{\rm {IR}}}} {\hbox{,I}}^{{{\rm {DR}}}} {\hbox{,I}}^{{{\rm {Na}}}} {\hbox{,I}}^{{{\rm {NaK}}}} \right] ={\hbox{ Z}}^{{}}_{{\rm {s}}} {\hbox{(v}}_{{\rm {s}}} {\hbox{,h}}_{{\rm {s}}} {\hbox{,m}}_{{\rm {s}}} {\hbox{,n}}_{{\rm {s}}} {\hbox{,h}}^{{\rm {K}}}_{{\rm {s}}} {\hbox{,S}}_{{\rm {s}}} {\hbox{,K}}_{{\rm {i}}} {\hbox{,K}}_{{\rm {e}}} {\hbox{,Na}}_{{\rm {i}}} {\hbox{,Na}}_{{\rm {e}}} {\hbox{)}}\\ &{\hbox{I}}^{{{\rm {ionic}}}}_{{\rm {s}}} {\hbox{ = I}}^{{{\rm {Cl}}}}{\hbox{ + I}}^{{{\rm {IR}}}} {\hbox{ + I}}^{{{\rm {DR}}}}{\hbox{ + I}}^{{{\rm {Na}}}} {\hbox{ + I}}^{{{\rm {NaK}}}} {-\hbox{I}}_{{{\rm {app}}}} {\hbox{(t;t}}_{{{\rm {app}}}}) \hbox{ }\mu\hbox{A/cm}^{2}{\hbox{ (sarcolemma current)}}\\ & \left[\frac{{{\hbox{dh}}_{{\rm {t}}} }} {{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dm}}_{{\rm {t}}} }} {{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dn}}_{{\rm {t}}} }} {{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dh}}^{{\rm {K}}}_{{\rm {t}}} }} {{{\hbox{dt}}}}{\hbox{,}}\frac{{{\hbox{dS}}_{{\rm {t}}} }} {{{\hbox{dt}}}}{\hbox{,I}}^{{{\rm {Cl}}}}_{{\rm {t}}} {\hbox{,I}}^{{{\rm {IR}}}}_{{\rm {t}}} {\hbox{,I}}^{{{\rm {DR}}}}_{{\rm {t}}} {\hbox{,I}}^{{{\rm {Na}}}}_{{\rm {t}}} {\hbox{,I}}^{{{\rm {NaK}}}}_{{\rm {t}}} \right] = {\hbox{ Z}}^{{}}_{{\rm {t}}} {\hbox{(v}}_{{\rm {t}}} {\hbox{,h}}_{{\rm {t}}} {\hbox{,m}}_{{\rm {t}}} {\hbox{,n}}_{{\rm {t}}} {\hbox{,h}}^{{\rm {K}}}_{{\rm {t}}} {\hbox{,S}}_{{\rm {t}}} {\hbox{,K}}_{{\rm {i}}} {\hbox{,K}}_{{\rm {t}}} {\hbox{,Na}}_{{\rm {i}}} {\hbox{,Na}}_{{\rm {t}}} {\hbox{)}}\\ &{\hbox{I}}^{{{\rm {ionic}}}}_{{\rm {t}}} {\hbox{ = I}}^{{{\rm {Cl}}}}_{{\rm {t}}} {\hbox{ + I}}^{{{\rm {IR}}}}_{{\rm {t}}} {\hbox{ + I}}^{{{\rm {DR}}}}_{{\rm {t}}} {\hbox{ + I}}^{{{\rm {Na}}}}_{{\rm {t}}} {\hbox{ + I}}^{{{\rm {NaK}}}}_{{\rm {t}}} \hbox{ }\mu\hbox{A/cm}^{2}{\hbox{ (t-tubule current)}}\\ & \frac{{\partial v_{t} {\left({r,x} \right)}}} {{\partial t}} + \frac{{I^{{\rm ionic}}_{t} }} {{C_{m} }} = D_{t} {\left({\frac{{\partial ^{2} v^{{}}_{t} }} {{\partial r^{2} }} + \frac{1} {r}\frac{{\partial v^{{}}_{t} }} {{\partial r}}} \right)} {\hbox{ mV/ms (t-tubule membrane voltage)}}\\ & \left. {\frac{{\partial v_{t} }} {{\partial r}}} \right|_{{r = 0}} = 0\\ & {\hbox{I}}_{{\rm {T}}} = 1000 \times [v_{s} (x) - v_{t} (r = R_{s},x)]/R_{a} = \bar{G}_{L} \left. {\frac{{\partial v_{t} }} {{\partial r}}} \right|_{{r = R_{s} }}\hbox{ }\mu\hbox{A/cm}^{2} {\hbox{\,(access current)}}\\ & \frac{{\partial v_{s} (x)}} {{\partial t}} + \frac{{I^{{\rm ionic}}_{s} }}{{C_{m}}}=D_{s} \frac{{\partial ^{2} v^{{}}_{s} }} {{\partial x^{2} }},\,{\hbox{mV/ms (sarcolemma membrane voltage)}}\\ & \left.{\frac{{\partial v_{s} }} {{\partial x}}} \right|_{{x = 0}} = 0,\left. {\frac{{\partial v_{s} }} {{\partial x}}} \right|_{{x = l_{s} }} = 0\\ & \frac{{\partial K_{t} (r,x)}} {{\partial t}} = D_{K} {\left({\frac{{\partial ^{2} K^{{}}_{t} }} {{\partial r^{2} }} + \frac{1} {r}\frac{{\partial K^{{}}_{t} }} {{\partial r}}} \right)} + {\hbox{(I}}^{{{\rm {IR}}}}_{{\rm {t}}} {\hbox{ + I}}^{{{\rm {DR}}}}_{{\rm {t}}} {-\hbox{2I}}^{{{\rm {NaK}}}}_{{\rm {t}}} + {\hbox{I}}^{{\rm {K}}}_{{{\rm {rest}}}} {\hbox{)/(1000F}}\xi {\hbox{)}}\\ & \left. {\frac{{\partial K_{t} }} {{\partial r}}} \right|_{{r = 0}} = 0\\ & K_{t} (r = R_{s},x) = K_{e} (x)\quad{\hbox{mM/ms}}{\hbox{ (t-tubule [K}}^{ + } {\hbox{])}}\\ & \frac{{\partial Na_{t} (r,x)}} {{\partial t}} = D_{{Na}} {\left({\frac{{\partial ^{2} Na^{{}}_{t} }} {{\partial r^{2} }} + \frac{1} {r}\frac{{\partial Na^{{}}_{t} }} {{\partial r}}} \right)} + {\hbox{(I}}^{{{\rm {Na}}}}_{{\rm {t}}} {\hbox{ + 3I}}^{{{\rm {NaK}}}}_{{\rm {t}}} + {\hbox{I}}^{{{\rm {Na}}}}_{{{\rm {rest}}}} {\hbox{)/(1000F}}\xi {\hbox{)}}\\ & \left. {\frac{{\partial Na_{t} }} {{\partial r}}} \right|_{{r = 0}} = 0\\ & Na_{t} (r = R_{s},x) = Na_{e} (x)\;{\hbox{mM/ms }}{\hbox{(t-tubule [Na}}^{ + } {\hbox{])}}\\ & \frac{{\partial K_{e} (x)}} {{\partial t}} = {\hbox{(I}}^{{{\rm {IR}}}} {\hbox{ + I}}^{{{\rm {DR}}}}{-\hbox{2I}}^{{{\rm {NaK}}}} + {\hbox{I}}^{{\rm {K}}}_{{{\rm {rest}}}} {\hbox{)/(1000F}}\xi _{3} {\hbox{)}}\;{\hbox{mM/ms}}\;{\hbox{(extracellular [K}}^{ + } {\hbox{])}}\\ & \frac{{\partial Na_{e} (x)}}{{\partial t}} = {\hbox{(I}}^{{{\rm {Na}}}} {\hbox{ + 3I}}^{{{\rm {NaK}}}}+{\hbox{I}}^{{{\rm {Na}}}}_{{{\rm {rest}}}} {\hbox{)/(1000F}}\xi _{3}{\hbox{) }}{\hbox{mM/ms}}\;{\hbox{(extracellular [Na}}^{ + } {\hbox{])}}\\ & \frac{{\partial K_{i} (r,x)}} {{\partial t}} = {-\hbox{f}}_{{\rm {T}}} {\hbox{(I}}^{{{\rm {IR}}}}_{{\rm {t}}} {\hbox{ + I}}^{{{\rm {DR}}}}_{{\rm {t}}} {-\hbox{2I}}^{{{\rm {NaK}}}}_{{\rm {t}}} + {\hbox{I}}^{{\rm {K}}}_{{{\rm {rest}}}} {\hbox{)/(1000F}}\xi {\hbox{)}}{\hbox{ mM/ms}}\; {\hbox{(intracellular [K}}^{ + } {\hbox{])}}\\ & \frac{{\partial Na_{i} (r,x)}} {{\partial t}} = {-\hbox{f}}_{{\rm {T}}} {\hbox{(I}}^{{{\rm {Na}}}}_{{\rm {t}}} {\hbox{ + 3I}}^{{{\rm {NaK}}}}_{{\rm {t}}} + {\hbox{I}}^{{{\rm {Na}}}}_{{{\rm {rest}}}} {\hbox{)/(1000F}}\xi {\hbox{)}}{\hbox{ mM/ms}}\;{\hbox{(intracellular [Na}}^{ + } {\hbox{])}}\\ \end{aligned}$$
(6)

Ca2+ release from RyR’s

Table 2 Model parameter values and definitions
$$\begin{aligned} {\text{k}}_{{\text{C}}} &= 0.5 \alpha _{1}\exp(({\text{v}}_{{\text{t}}}-\overline{\text{V}} /(8\text{K}))\ ({\text{activation rate between closed states}})\\{\text{k}}_{{\text{Cm}}} &= 0.5 \alpha _{1} \exp(-({\text{v}}_{{\text{t}}}-\overline{\text{V}}/(8\text{K}))\ ({\text{inactivation rate between closed states}})\\\frac{{\text{dC}}_{0}}{{\text{dt}}} &= -{\text{k}}_{{\rm{L}}} {\text{C}}_{0} +{\text{k}}_{{{\text{Lm}}}}{\text{O}}_{0}- 4{\text{k}}_{{\text{C}}} {\text{C}}_{0}+{\text{k}}_{{{\text{Cm}}}} {\text{C}}_{1}\ ({\text{C}}_{0}-{\text{C}}_{4}\ {\text{are RyR closed states}})\\ \frac{{\text{dO}}_{0}}{{\text{dt}}} &=+{\text{k}}_{{\text{L}}}{\text{C}}_{0} - {\text{k}}_{{\text{Lm}}}{\text{O}}_{0}-{\text{4k}}_{{\text{C}}}/{\text{fO}}_{0}+{\text{fk}}_{{{\text{Cm}}}}{\text{O}}_{1}\ ({\text{O}}_{0} -{\text{O}}_{4} {\text{ are RyR open states}})\\ \frac{{{\text{dC}}_{1}}}{{{\text{dt}}}}&=+{\text{4k}}_{{\text{C}}}{\text{C}}_{0}-{\text{k}}_{{{\text{Cm}}}}{\text{C}}_{1}-{\text{k}}_{{\text{L}}}/{\text{fC}}_{1}+{\text{k}}_{{{\text{Lm}}}} {\text{fO}}_{1}-{\text{3k}}_{{\text{C}}}{\text{C}}_{1}+{\text{2k}}_{\text{Cm}}\text{C}_{2}\\\frac{{{\text{dO}}_{1}}}{\text{dt}}&=\text{k}_{\text{L}}/{\text{fC}}_{1}-{\text{k}}_{{{\text{Lm}}}}{\text{fO}}_{1}+{\text{4k}}_{{\text{C}}}/{\text{fO}}_{0}-{\text{fk}}_{{{\text{Cm}}}} {\text{O}}_{1}-{\text{3k}}_{{\rm{C}}}/\text{fO}_{1}+2\text{fk}_{\text{Cm}}\text{O}_{2}\\\frac{{\text{dC}}_{2}}{\text{dt}}&=3\text{k}_{\text{C}}\text{C}_{1}-2\text{k}_{\text{Cm}}\text{C}_{2}-\text{k}_{\text{L}}/\text{f}^{2}\text{C}_{2}+\text{k}_{\text{Lm}}\text{f}^{2}\text{O}_{2}-2\text{k}_{\text{C}}\text{C}_{2}+3\text{k}_{\text{Cm}}\text{C}_{\text{3}}\\\frac{\text{dO}_{2}}{\text{dt}}&=3{\text{k}}_{\text{C}}/\text{fO}_{1}-2\text{fk}_{\text{Cm}}\text{O}_{2}+\text{k}_{\text{L}}/\text{f}^{2}\text{C}_{2}-\text{k}_{\text{Lm}}{\text{f}}^{2}\text{O}_{2}-2\text{k}_{\text{C}}/\text{fO}_{2}+3\text{fk}_{\text{Cm}}\text{O}_{\text{3}}\\\frac{{\text{dC}}_{\text{3}}}{\text{dt}}&=2{\text{k}}_{\text{C}}{\text{C}}_{2}-3{\text{k}}_{\text{Cm}}{\text{C}}_{\text{3}}-{\text{k}}_{\text{L}}/{\text{f}}^{3}\text{C}_{3}+\text{k}_{\text{Lm}}\text{f}^{3}\text{O}_{3}-\text{k}_{\text{C}}\text{C}_{3}+4\text{k}_{\text{Cm}}\text{C}_{4}\\\frac{\text{dO}_{3}}{\text{dt}}&=\text{k}_{\text{L}}/\text{f}^{3}\text{C}_{\rm3}-\text{k}_{\text{Lm}}\text{f}^{\text{3}}\text{O}_{3}+2\text{k}_{\text{C}}/\text{fO}_{2}-3\text{fk}_{\text{Cm}}\text{O}_{3}-\text{k}_{\text{C}}/\text{fO}_{\text{3}}+4\text{fk}_{\text{Cm}}\text{O}_{\text{4}}\\\frac{\text{dC}_{\text{4}}}{\text{dt}}&=\text{k}_{\text{C}}\text{C}_{3}-4\text{k}_{\text{Cm}}\text{C}_{4}-\text{k}_{\text{L}}/\text{f}^{4}\text{C}_{4}+\text{k}_{\text{Lm}}\text{f}^{4}\text{O}_{4}\\\frac{\text{dO}_{4}}{\text{dt}}&=\text{k}_{\text{C}}/\text{fO}_{3}-4\text{fk}_{\text{Cm}}\text{O}_{4}+\text{k}_{\text{L}}/\text{f}^{4}\text{C}_{4}\text{-k}_{\text{Lm}}\text{f}^{4}\text{O}_{4}\end{aligned}$$
(7)

Ca2+ transport and XB dynamics

Table 3 Model parameter values and definitions
$$\begin{aligned} & {\text{T}}_0 = {\text{T}}_{{\text{tot}}} - {\text{Ca}}_2^{\text{T}} - {\text{Ca}}_2^{{\text{CaT}}} - {\text{D}}_0 - {\text{D}}_1 - {\text{D}}_2 - {\text{A}}_1 - {\text{A}}_2 \,\mu {\text{M}}\,([{\text{free}}\,{\text{troponin}}\,{\text{binding}}\,{\text{sites}}]) \\ & \frac{{{\text{dCa}}_1 }}{{{\text{dt}}}} = ({\text{i}}_2 ({\text{O}}_0 + {\text{O}}_1 + {\text{O}}_2 + {\text{O}}_3 + {\text{O}}_4 )) \times ({\text{Ca}}_1^{{\text{SR}}} - {\text{Ca}}_1 )/{\text{V}}_1 - \nu _{{\text{SR}}} {\text{Ca}}_1 /({\text{Ca}}_1 + {\text{K}}_{{\text{SR}}} )/{\text{V}}_1 {\text{ }} + {\text{ L}}_e ({\text{Ca}}_1^{{\text{SR}}} - {\text{Ca}}_1 )/{\text{V}}_1 \\ & - \tau _{\text{R}} ({\text{Ca}}_1 - {\text{Ca}}_2 )/{\text{V}}_1 - ({\text{k}}_{\text{P}}^{{\text{on}}} {\text{Ca}}_1 ({\text{P}}_{{\text{tot}}} - {\text{Ca}}_{\text{1}}^{\text{P}} - {\text{Mg}}_1^{\text{P}} ) - {\text{k}}_{\text{P}}^{{\text{off}}} {\text{Ca}}_1^{\text{P}} ) - ({\text{k}}_{{\text{CATP}}}^{{\text{on}}} {\text{Ca}}_1 \left[ {{\text{ATP}}} \right]_1 - {\text{k}}_{{\text{CATP}}}^{{\text{off}}} {\text{Ca}}_{\text{1}}^{{\text{ATP}}} )\hbox{ }\mu {\text{M}}\,({\text{TSR}}\,{\text{myoplasm}}\,[{\text{Ca}}]) \\ & \frac{{{\text{dCa}}_{\text{1}}^{{\text{SR}}} }}{{{\text{dt}}}} = - ({\text{i}}_2 ({\text{O}}_0 + {\text{O}}_1 + {\text{O}}_2 + {\text{O}}_3 + {\text{O}}_4 )) \times ({\text{Ca}}_{\text{1}}^{{\text{SR}}} - {\text{Ca}}_1 )/{\text{V}}_1^{{\text{SR}}} + \nu _{{\text{SR}}} {\text{Ca}}_1 /({\text{Ca}}_1 + {\text{K}}_{{\text{SR}}} )/{\text{V}}_1^{{\text{SR}}} {\text{ }} \\ & - {\text{L}}_{\text{e}} ({\text{Ca}}_{\text{1}}^{{\text{SR}}} - {\text{Ca}}_1 )/{\text{V}}_1^{{\text{SR}}} - \tau _{\text{R}}^{{\text{SR}}} ({\text{Ca}}_1^{{\text{SR}}} - {\text{Ca}}_2^{{\text{SR}}} )/{\text{V}}_1^{{\text{SR}}} - ({\text{k}}_{{\text{Cs}}}^{{\text{on}}} {\text{Ca}}_1^{{\text{SR}}} ({\text{Cs}}_{{\text{tot}}} - {\text{Ca}}_1^{{\text{Cs}}} ) - {\text{k}}_{{\text{Cs}}}^{{\text{off}}} {\text{Ca}}_{\text{1}}^{{\text{Cs}}} )\hbox{ }\mu {\text{M}}\hbox{ }({\text{TSR}}\,[{\text{Ca}}]) \\ & \frac{{{\text{dCa}}_2 }}{{{\text{dt}}}} = - \nu _{{\text{SR}}} {\text{Ca}}_2 /({\text{Ca}}_2 + {\text{K}}_{{\text{SR}}} )/{\text{V}}_2 + {\text{L}}_e ({\text{Ca}}_2^{{\text{SR}}} - {\text{Ca}}_2 )/{\text{V}}_2 + \tau _{\text{R}} ({\text{Ca}}_1 - {\text{Ca}}_2 )/{\text{V}}_2 - ({\text{k}}_{\text{T}}^{{\text{on}}} {\text{Ca}}_2 {\text{T}}_0 - {\text{k}}_{\text{T}}^{{\text{off}}} {\text{Ca}}_{\text{2}}^{\text{T}} \\ & \quad \quad \quad + {\text{k}}_{\text{T}}^{{\text{on}}} {\text{Ca}}_2 {\text{Ca}}_2^{\text{T}} - {\text{k}}_{\text{T}}^{{\text{off}}} {\text{Ca}}_{\text{2}}^{{\text{CaT}}} + {\text{k}}_{\text{T}}^{{\text{on}}} {\text{Ca}}_2 {\text{D}}_0 - {\text{k}}_{\text{T}}^{{\text{off}}} {\text{D}}_1 + {\text{k}}_{\text{T}}^{{\text{on}}} {\text{Ca}}_2 {\text{D}}_1 - {\text{k}}_{\text{T}}^{{\text{off}}} {\text{D}}_2 ) \\ & \quad \quad \quad - ({\text{k}}_{\text{P}}^{{\text{on}}} {\text{Ca}}_2 ({\text{P}}_{{\text{tot}}} - {\text{Ca}}_2^{\text{P}} - {\text{Mg}}_2^{\text{P}} ) - {\text{k}}_{\text{P}}^{{\text{off}}} {\text{Ca}}_2^{\text{P}} ) - ({\text{k}}_{{\text{CATP}}}^{{\text{on}}} {\text{Ca}}_2 \left[ {{\text{ATP}}} \right]_2 - {\text{k}}_{{\text{CATP}}}^{{\text{off}}} {\text{Ca}}_2^{{\text{ATP}}} )\hbox{ }\mu {\text{M}}\hbox{ }({\text{myoplasm}}\hbox{ }[{\text{Ca}}]) \\ & \frac{{{\text{dCa}}_2^{{\text{SR}}} }}{{{\text{dt}}}} = + \nu _{{\text{SR}}} {\text{Ca}}_2 /({\text{Ca}}_2 + {\text{K}}_{{\text{SR}}} )/{\text{V}}_2^{{\text{SR}}} - {\text{L}}_{\text{e}} ({\text{Ca}}_2^{{\text{SR}}} - {\text{Ca}}_2 )/{\text{V}}_2^{{\text{SR}}} + \tau _{\text{R}}^{{\text{SR}}} ({\text{Ca}}_1^{{\text{SR}}} - {\text{Ca}}_2^{{\text{SR}}} )/{\text{V}}_2^{{\text{SR}}} \\ & \quad \quad \quad - ({\text{k}}_{{\text{Cs}}}^{{\text{on}}} {\text{Ca}}_2^{{\text{SR}}} ({\text{Cs}}_{{\text{tot}}} - {\text{Ca}}_2^{{\text{Cs}}} ) - {\text{k}}_{{\text{Cs}}}^{{\text{off}}} {\text{Ca}}_2^{{\text{Cs}}} ) \\ & \quad \quad \quad - 0.001 \times [{\text{A}}_{\text{P}} ({\text{P}}_{{\text{SR}}} \times 0.001 \times {\text{Ca}}_{\text{2}}^{{\text{SR}}} - {\text{PP}}){\text{H}}({\text{P}}_{{\text{SR}}} \times 0.001 \times {\text{Ca}}_2^{{\text{SR}}} - {\text{PP}}) \times 0.001 \times {\text{P}}_{{\text{SR}}} {\text{Ca}}_2^{{\text{SR}}} \\ & \quad \quad \quad - {\text{B}}_{\text{P}} {\text{P}}_{{\text{SR}}}^{\text{C}} ({\text{PP}} - {\text{P}}_{{\text{SR}}} \times 0.001 \times {\text{Ca}}_2^{{\text{SR}}} ){\text{H}}({\text{PP}} - {\text{P}}_{{\text{SR}}} \times 0.001 \times {\text{Ca}}_2^{{\text{SR}}} )]\hbox{ }\mu {\text{M}}\hbox{ }({\text{SR}}\hbox{ }[{\text{Ca}}]){\text{ }} \\ & \frac{{{\text{dCa}}_2^{\text{T}} }}{{{\text{dt}}}} = {\text{k}}_{\text{T}}^{{\text{on}}} {\text{Ca}}_2 {\text{T}}_0 - {\text{k}}_{\text{T}}^{{\text{off}}} {\text{Ca}}_2^{\text{T}} - {\text{k}}_{\text{T}}^{{\text{on}}} {\text{Ca}}_2 {\text{Ca}}_2^{\text{T}} + {\text{k}}_{\text{T}}^{{\text{off}}} {\text{Ca}}_2^{{\text{CaT}}} - {\text{k}}_0^{{\text{on}}} {\text{Ca}}_2^{\text{T}} + {\text{k}}_0^{{\text{off}}} {\text{D}}_1 \,\mu {\text{M}}\,({\text{myoplasm}}\,[{\text{Ca - Troponin}}]) \\ & \frac{{{\text{dCa}}_1^{\text{P}} }}{{{\text{dt}}}} = {\text{k}}_{\text{P}}^{{\text{on}}} {\text{Ca}}_1 ({\text{P}}_{{\text{tot}}} - {\text{Ca}}_1^{\text{P}} - {\text{Mg}}_1^{\text{P}} ) - {\text{k}}_{\text{P}}^{{\text{off}}} {\text{Ca}}_1^P \,{\text{ }}\mu {\text{M}}\,({\text{TSR}}\,{\text{myoplasm}}\,[{\text{Ca}} - {\text{Parvalbumin}}]) \\ & \frac{{{\text{dCa}}_2^{\text{P}} }}{{{\text{dt}}}} = {\text{k}}_{\text{P}}^{{\text{on}}} {\text{Ca}}_2 ({\text{P}}_{{\text{tot}}} - {\text{Ca}}_2^{\text{P}} - {\text{Mg}}_2^{\text{P}} ) - {\text{k}}_{\text{P}}^{{\text{off}}} {\text{Ca}}_2^{\text{P}} \,\mu {\text{M}}\,({\text{myoplasm}}\,[{\text{Ca - Parvalbumin}}]) \\ & {\text{dMg}}_1^{\text{P}} /{\text{dt}} = {\text{k}}_{{\text{Mg}}}^{{\text{on}}} ({\text{P}}_{{\text{tot}}} - {\text{Ca}}_1^{\text{P}} - {\text{Mg}}_1^{\text{P}} ){\text{Mg}}_1 - {\text{k}}_{{\text{Mg}}}^{{\text{off}}} {\text{Mg}}_1^{\text{P}} \,\mu {\text{M}}\,({\text{TSR}}\,{\text{myoplasm}}\,[{\text{Mg - Parvalbumin}}]) \\ & {\text{dMg}}_2^{\text{P}} /{\text{dt}} = {\text{k}}_{{\text{Mg}}}^{{\text{on}}} ({\text{P}}_{{\text{tot}}} - {\text{Ca}}_2^{\text{P}} - {\text{Mg}}_2^{\text{P}} ){\text{Mg}}_2 - {\text{k}}_{{\text{Mg}}}^{{\text{off}}} {\text{Mg}}_2^{\text{P}} \,\mu {\text{M}}\,({\text{myoplasm}}\,[{\text{Mg - Parvalbumin}}]) \\ & {\text{dCa}}_1^{{\text{Cs}}} /{\text{dt}} = {\text{k}}_{{\text{Cs}}}^{{\text{on}}} {\text{Ca}}_1^{{\text{SR}}} ({\text{Cs}}_{{\text{tot}}} - {\text{Ca}}_1^{{\text{Cs}}} ) - {\text{k}}_{{\text{Cs}}}^{{\text{off}}} {\text{Ca}}_1^{{\text{Cs}}} \,\mu {\text{M}}\,({\text{TSR}}\,[{\text{Ca - Calsequestrin}}]) \\ & {\text{dCa}}_2^{{\text{Cs}}} /{\text{dt}} = {\text{k}}_{{\text{Cs}}}^{{\text{on}}} {\text{Ca}}_{\text{2}}^{{\text{SR}}} ({\text{Cs}}_{{\text{tot}}} - {\text{Ca}}_2^{{\text{Cs}}} ) - {\text{k}}_{{\text{Cs}}}^{{\text{off}}} {\text{Ca}}_2^{{\text{Cs}}} \,\mu {\text{M}}\,({\text{SR}}\,[{\text{Ca - Calsequestrin}}]) \\ & {\text{dCa}}_1^{{\text{ATP}}} /{\text{dt}} = {\text{k}}_{{\text{CATP}}}^{{\text{on}}} {\text{Ca}}_1 \left[ {{\text{ATP}}} \right]_1 - {\text{k}}_{{\text{CATP}}}^{{\text{off}}} {\text{Ca}}_1^{{\text{ATP}}} - \tau _{{\text{ATP}}} ({\text{Ca}}_1^{{\text{ATP}}} - {\text{Ca}}_2^{{\text{ATP}}} )/{\text{V}}_1 \,\mu {\text{M}}\,({\text{TSR}}\,{\text{myoplasm}}\,[{\text{Ca - ATP}}]) \\ & {\text{dCa}}_2^{{\text{ATP}}} /{\text{dt}} = {\text{k}}_{{\text{CATP}}}^{{\text{on}}} {\text{Ca}}_2 \left[ {{\text{ATP}}} \right]_2 - {\text{k}}_{{\text{CATP}}}^{{\text{off}}} {\text{Ca}}_2^{{\text{ATP}}} + \tau _{{\text{ATP}}} ({\text{Ca}}_1^{{\text{ATP}}} - {\text{Ca}}_2^{{\text{ATP}}} )/{\text{V}}_2 \,\mu {\text{M}}\,({\text{myoplasm}}\,[{\text{Ca - ATP}}]) \\ & {\text{dMg}}_1^{{\text{ATP}}} /{\text{dt}} = {\text{k}}_{{\text{MATP}}}^{{\text{on}}} {\text{Mg}}_1 \left[ {{\text{ATP}}} \right]_1 - {\text{k}}_{{\text{MATP}}}^{{\text{off}}} {\text{Mg}}_1^{{\text{ATP}}} - \tau _{{\text{ATP}}} ({\text{Mg}}_1^{{\text{ATP}}} - {\text{Mg}}_2^{{\text{ATP}}} )/{\text{V}}_1 \,\mu {\text{M}}\,({\text{TSR}}\,{\text{myoplasm}}\,[{\text{Mg - ATP}}]) \\ & {\text{dMg}}_2^{{\text{ATP}}} /{\text{dt}} = {\text{k}}_{{\text{MATP}}}^{{\text{on}}} {\text{Mg}}_2 \left[ {{\text{ATP}}} \right]_2 - {\text{k}}_{{\text{MATP}}}^{{\text{off}}} {\text{Mg}}_2^{{\text{ATP}}} + \tau _{{\text{ATP}}} ({\text{Mg}}_1^{{\text{ATP}}} - {\text{Mg}}_2^{{\text{ATP}}} )/{\text{V}}_2 \,\mu {\text{M}}\,({\text{myoplasm}}\,[{\text{Mg - ATP}}]) \\ \end{aligned}$$
(8)
$$ \begin{aligned} & \hbox{d}{\left[ \hbox{ATP} \right]}_{1}/ {{\hbox{dt}}}=-(\hbox{k}^{\rm on}_{\rm CATP}\hbox{Ca}_{1}\left[\hbox{ATP}\right]_{1}-\hbox{k}^{\rm off}_{\rm CATP}\hbox{Ca}^{\rm ATP}_{1})-(\hbox{k}^{\rm on}_{\rm MATP}\hbox{Mg}_{1}\left[\hbox{ATP}\right]_{1}-\hbox{k}^{\rm off}_{\rm MATP} \hbox{Mg}^{\rm ATP}_{1})\\ & -\tau _{\rm ATP}(\left[\hbox{ATP}\right]_{1} -\left[ \hbox{ATP}\right]_{2})/\hbox{V}_{1} \;\mu\hbox{M}\;(\hbox{TSR myoplasm [ATP]})\\ &\hbox{d}\left[\hbox{ATP}\right]_{2} /{{\hbox{dt}}}=-(\hbox{k}^{\rm on}_{\rm CATP} \hbox{Ca}_{2}\left[\hbox{ATP}\right]_{2}-\hbox{k}^{\rm off}_{\rm CATP} \hbox{Ca}^{\rm ATP}_{2})-(\hbox{k}^{\rm on}_{\rm MATP} \hbox{Mg}_{2}\left[\hbox{ATP}\right]_{2}-\hbox{k}^{\rm off}_{\rm MATP}\hbox{Mg}^{\rm ATP}_{2})\\ & +\tau_{\rm ATP}(\left[\hbox{ATP}\right]_{1}-\left[\hbox{ATP}\right]_{2})/\hbox{V}_{2}\;\mu\hbox{M}\;(\hbox{myoplasm [ATP]})\\ & \hbox{dMg}_{1}/\hbox{dt}=-(\hbox{k}^{\rm on}_{\rm Mg}(\hbox{P}_{\rm tot} -\hbox{Ca}^{\rm P}_{1}-\hbox{Mg}^{\rm P}_{1})\hbox{Mg}_{1} -\hbox{k}^{\rm off}_{\rm Mg}\hbox{Mg}^{\rm P}_{1})-(\hbox{k}^{\rm on}_{\rm MATP}\hbox{Mg}_{1}\left[\hbox{ATP}\right]_{1} -\hbox{k}^{\rm off}_{\rm MATP}\hbox{Mg}^{\rm ATP}_{1})\\ & - \tau _{\rm Mg}(\hbox{Mg}_{1}-\hbox{Mg}_{2})/\hbox{V}_{1} \;\mu\hbox{M}\;(\hbox{TSR myoplasm [Mg]})\\ & \hbox{dMg}_{2}/\hbox{dt}=-(\hbox{k}^{\rm on}_{\rm Mg} (\hbox{P}_{\rm tot}-\hbox{Ca}^{\rm P}_{2}-\hbox{Mg}^{\rm P}_{2})\hbox{Mg}_{2}-\hbox{k}^{\rm off}_{\rm Mg}\hbox{Mg}^{\rm P}_{2})-(\hbox{k}^{\rm on}_{\rm MATP}\hbox{Mg}_{2}\left[ \hbox{ATP}\right]_{2}-\hbox{k}^{\rm off}_{\rm MATP} \hbox{Mg}^{\rm ATP}_{2})\\ & + \tau _{\rm Mg}(\hbox{Mg}_{1}-\hbox{Mg}_{2})/\hbox{V}_{2}\;\mu\hbox{M}\;(\hbox{myoplasm [Mg]})\\& \frac{\hbox{dCa}^{\rm CaT}_{2}} {\hbox{dt}}=\hbox{k}^{\rm on}_{\rm T} \hbox{Ca}_{2}\hbox{Ca}^{\rm T}_{2}-\hbox{k}^{\rm off}_{\rm T} \hbox{Ca}^{\rm CaT}_{2}-\hbox{k}^{\rm on}_{\rm Ca}\hbox{Ca}^{\rm CaT}_{2} + \hbox{k}^{\rm off}_{\rm Ca}\hbox{D}_{2}\;\mu\hbox{M}\;(\hbox{myoplasm [Ca{-}Ca-Troponin]})\\ & \frac{\hbox{dD}_{0}} {\hbox{dt}} =-\hbox{k}^{\rm on}_{\rm T}\hbox{Ca}_{2}\hbox{D}_{0} + \hbox{k}^{\rm off}_{\rm T}\hbox{D}_{1} + \hbox{k}^{\rm on}_{0}\hbox{T}_{0} -\hbox{k}^{\rm off}_{0}\hbox{D}_{0}\;\mu\hbox{M}\;(\hbox{myoplasm [detached activated RU]})\\ & \frac{\hbox{dD}_{1}} {\hbox{dt}}=+\hbox{k}^{\rm on}_{\rm T} \hbox{Ca}_{2}\hbox{D}_{0}-\hbox{k}^{\rm off}_{\rm T} \hbox{D}_{1}+\hbox{k}^{\rm on}_{0}\hbox{Ca}^{\rm T}_{2}-\hbox{k}^{\rm off}_{0} \hbox{D}_{1}-\hbox{k}^{\rm on}_{\rm T}\hbox{Ca}_{2}\hbox{D}_{1} + \hbox{k}^{\rm off}_{\rm T} \hbox{D}_{2}\;\mu\hbox{M}\;\\ & \hbox{(myoplasm [detached activated RU-Ca])}\\ & \frac{\hbox{dD}_{2}}{\hbox{dt}}=+\hbox{k}^{\rm on}_{\rm T} \hbox{Ca}_{2}\hbox{D}_{1}-\hbox{k}^{\rm off}_{\rm T}\hbox{D}_{2} + \hbox{k}^{\rm on}_{\rm Ca}\hbox{Ca}^{\rm CaT}_{2}-\hbox{k}^{\rm off}_{\rm Ca}\hbox{D}_{2}-\hbox{f}_{\rm o}\hbox{D}_{2} + \hbox{f}_{\rm p}\hbox{A}_{1} + \hbox{g}_{\rm o}\hbox{A}_{2} \;\mu\hbox{M}\;\\ & \hbox{(myoplasm [detached activated RU{-}Ca{-}Ca])}\\ & \frac{\hbox{dA}_{1}} {\hbox{dt}} = + \hbox{f}_{\rm o}\hbox{D}_{2} -\hbox{f}_{\rm p}\hbox{A}_{1} + \hbox{h}_{\rm p}\hbox{A}_{2}-\hbox{h}_{\rm o} \hbox{A}_{1}\;\mu\hbox{M}\;(\hbox{myoplasm [attached pre-power stroke XB]})\\ & \frac{\hbox{dA}_{2}} {\hbox{dt}}=-\hbox{h}_{\rm p}\hbox{A}_{2} + \hbox{h}_{\rm o} \hbox{A}_{1} -\hbox{g}_{\rm o}\hbox{A}_{2}\;\mu\hbox{M (myoplasm [attached post-power stroke XB])}\\ & \frac{\hbox{dP}}{\hbox{dt}}=0.001\times\left(\hbox{h}_{\rm o}\hbox{A}_{1}-\hbox{h}_{\rm p}\hbox{A}_{2}\right)-\hbox{b}_{\rm P}\hbox{P}-\hbox{k}_{\rm P}(\hbox{P}-\hbox{P}_{\rm SR})/ \hbox{V}_{2},\hbox{ mM}\;\hbox{(myoplasmic phosphate)}\\& \frac{\hbox{dP}_{\rm SR}}{\hbox{dt}}=\hbox{k}_{\rm P}(\hbox{P}-\hbox{P}_{\rm SR})/\hbox{V}^{\rm SR}_{2}-[\hbox{A}_{\rm P} (\hbox{P}_{\rm SR}\times 0.001 \times \hbox{Ca}^{\rm SR}_{2} -\hbox{PP})\hbox{H}(\hbox{P}_{\rm SR} \times 0.001 \times \hbox{Ca}^{\rm SR}_{2}-\hbox{PP})\times 0.001 \times \hbox{P}_{\rm SR}\hbox{Ca}^{\rm SR}_{2}\\ & -\hbox{B}_{\rm P}\hbox{P}^{\rm C}_{\rm SR}(\hbox{PP} - \hbox{P}_{\rm SR}\times 0.001 \times \hbox{Ca}^{\rm SR}_{2})\hbox{H}(\hbox{PP}-\hbox{P}_{\rm SR}\times0.001\times \hbox{Ca}^{\rm SR}_{2})],\;\hbox{mM}\,\hbox{(SR phosphate)}\\ & \frac{\hbox{dP}^{\rm C}_{\rm SR}} {\hbox{dt}}=\hbox{A}_{\rm P}(\hbox{P}_{\rm SR}\times0.001\times \hbox{Ca}^{\rm SR}_{2}-\hbox{PP})\hbox{H}(\hbox{P}_{\rm SR} \times 0.001 \times \hbox{Ca}^{\rm SR}_{2}-\hbox{PP})\times 0.001 \times \hbox{P}_{\rm SR}\hbox{Ca}^{\rm SR}_{2}\\ & -\hbox{B}_{\rm P}\hbox{P}^{\rm C}_{\rm SR}(\hbox{PP}-\hbox{P}_{\rm SR} \times 0.001 \times \hbox{Ca}^{\rm SR}_{2})\hbox{H}(\hbox{PP}-\hbox{P}_{\rm SR}\times 0.001 \times \hbox{Ca}^{\rm SR}_{2}),\;\hbox{mM}\;(\hbox{SR phosphate-Ca}^{2+}\hbox{precipitate})\end{aligned}$$
(9)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shorten, P.R., O’Callaghan, P., Davidson, J.B. et al. A mathematical model of fatigue in skeletal muscle force contraction. J Muscle Res Cell Motil 28, 293–313 (2007). https://doi.org/10.1007/s10974-007-9125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-007-9125-6

Keywords

Navigation