Skip to main content
Log in

Use of thin filament reconstituted muscle fibres to probe the mechanism of force generation

  • Original Paper
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

The technique of selective removal of the thin filament by gelsolin in bovine cardiac muscle fibres, and reconstitution of the thin filament from isolated proteins is reviewed, and papers that used reconstituted preparations are discussed. By comparing the results obtained in the absence/presence of regulatory proteins tropomyosin (Tm) and troponin (Tn), it is concluded that the role of Tm and Tn in force generation is not only to expose the binding site of actin to myosin, but also to modify actin for better stereospecific and hydrophobic interaction with myosin. This conclusion is further supported by experiments that used a truncated Tm mutant and the temperature study of reconstituted fibres. The conclusion is consistent with the hypothesis that there are three states in the thin filament: blocked state, closed state, and open state. Tm is the major player to produce these effects, with Tn playing the role of Ca2+ sensing and signal transmission mechanism. Experiments that changed the number of negative charges at the N-terminal finger of actin demonstrates that this part of actin is essential to promote the strong interaction between actin and myosin molecules, in addition to the well-known weak interaction that positions the myosin head at the active site of actin prior to force generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott RH, Steiger GJ (1977) Temperature and amplitude dependence of tension transients in glycerinated skeletal and insect fibrillar muscle. J Physiol (Lond) 266:13–42

    CAS  Google Scholar 

  • Andrews MA, Maughan DW, Nosek TM, Godt RE (1991) Ion-specific and general ionic effects on contraction of skinned fast-twitch skeletal muscle from the rabbit. J Gen Physiol 98:1105–1125

    Article  PubMed  CAS  Google Scholar 

  • Araujo A, Walker JW (1996) Phosphate release and force generation in cardiac myocytes investigated with caged phosphate and caged calcium. Biophys J 70:2316–2326

    PubMed  CAS  Google Scholar 

  • Bagshaw CR, Trentham DR (1974) The characterization of myosin-product complexes and of product-release steps during the magnesium ino-dependent adenosine triphosphatase reaction. Biochem J 141:331–349

    PubMed  CAS  Google Scholar 

  • Bershitsky SY, Tsaturyan AK (1992) Tension responses to joule temperature jump in skinned rabbit muscle fibres. J Physiol (Lond) 447:425–448

    CAS  Google Scholar 

  • Bing W, Knott A, Marston SB (2000) A simple method for measuring the relative force exerted by myosin on actin filaments in the in vitro motility assay: evidence that tropomyosin and troponin increase force in single thin filaments. Biochem J 350:693–699

    Article  PubMed  CAS  Google Scholar 

  • Blanchard E, Seidman C, Seidman JG, LeWinter M, Maughan D (1999) Altered crossbridge kinetics in the αMHC403/+ mouse model of familial hypertrophic cardiomyopathy. Circ Res 84:475–483

    PubMed  CAS  Google Scholar 

  • Blanchard EM, Smith GL, Allen DG, Alpert NR (1990) The effects of 2,3-butanedione monoxime on initial heat, tension, and aequorin light output of ferret papillary muscles. Pflugers Arch 416:219–221

    Article  PubMed  CAS  Google Scholar 

  • Brenner B, Eisenberg E (1986) Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution. Proc Natl Acad Sci USA 83:3542–3546

    Article  PubMed  CAS  ADS  Google Scholar 

  • Brenner B, Schoenberg M, Chalovich JM, Greene LE, Eisenberg E (1982) Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proc Natl Acad Sci USA 79:7288–7291

    Article  PubMed  CAS  ADS  Google Scholar 

  • Chalovich JM (1992) Actin mediated regulation of muscle contraction. Pharmacol Ther 55:95–148

    Article  PubMed  CAS  Google Scholar 

  • Chang AN, Potter JD (2005) Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail Rev 10:225–235

    Article  PubMed  CAS  Google Scholar 

  • Cook RK, Root D, Miller C, Reisler E, Rubenstein PA (1993) Enhanced stimulation of myosin subfragment 1 ATPase activity by addition of negatively charged residues to the yeast actin NH2 terminus. J Biol Chem 268:2410–2415

    PubMed  CAS  Google Scholar 

  • Coupland ME, Puchert E, Ranatunga KW (2001) Temperature dependence of active tension in mammalian (rabbit psoas) muscle fibres: effect of inorganic phosphate. J Physiol (Lond) 536:879–891

    Article  CAS  Google Scholar 

  • Dantzig J, Goldman Y, Millar NC, Lacktis J, Homsher E (1992) Reversal of the cross-bridge force-generation transition by the photogeneration of phosphate in rabbit psoas muscle fibers. J Physiol (Lond) 451:247–278

    CAS  Google Scholar 

  • DasGupta G, Reisler E (1989) Antibody against the amino terminus of alpha-actin inhibits actomyosin interactions in the presence of ATP. J Mol Biol 207:833–836

    Article  PubMed  CAS  Google Scholar 

  • Edman KAP (1979) The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J Physiol (Lond) 269:255–272

    Google Scholar 

  • Fortune NS, Geeves MA, Ranatunga KW (1991) Tension responses to rapid pressure release in glycerinated rabbit muscle fibers. Proc Natl Acad Sci USA 88:7323–7327

    Article  PubMed  CAS  ADS  Google Scholar 

  • Fowler VM, Sussmann MA, Miller PG, Flucher BE, Daniels MP (1993) Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J Cell Biol 120:411–420

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Ishiwata S (1998) Spontaneous oscillatory contraction without regulatory proteins in actin filament-reconstituted fibers. Biophys J 75:1439–1445

    PubMed  CAS  Google Scholar 

  • Fujita H, Ishiwata S (1999) Tropomyosin modulates pH dependence of isometric tension. Biophys J 77:1540–1546

    PubMed  CAS  Google Scholar 

  • Fujita H, Kawai M (2002) Temperature effect on isometric tension is mediated by regulatory proteins tropomyosin and troponin in bovine myocardium. J Physiol (Lond) 539:267–276

    Article  CAS  Google Scholar 

  • Fujita H, Lu X, Suzuki M, Ishiwata S, Kawai M (2004) The effect of tropomyosin on force and elementary steps of the cross-bridge cycle in reconstituted bovine myocardium. J Physiol (Lond) 556:637–649

    Article  CAS  Google Scholar 

  • Fujita H, Sasaki D, Ishiwata S, Kawai M (2002) Elementary steps of the cross-bridge cycle in bovine myocardium with and without regulatory proteins. Biophys J 82:915–928

    PubMed  CAS  Google Scholar 

  • Fujita H, Yasuda K, Niitsu S, Funatsu T, Ishiwata S (1996) Structural and functional reconstitution of thin filaments in the contractile apparatus of cardiac muscle. Biophys J 71:2307–2318

    PubMed  CAS  Google Scholar 

  • Funatsu T, Anazawa T, Ishiwata S (1994) Structural and functional reconstitution of thin filaments in skeletal muscle. J Muscle Res Cell Motil 15:158–171

    Article  PubMed  CAS  Google Scholar 

  • Funatsu T, Asami Y, Ishiwata S (1988) β-Actinin: a capping protein at the pointed end of thin filaments in skeletal muscle. J Biochem (Tokyo) 103:61–71

    CAS  Google Scholar 

  • Funatsu T, Higuchi H, Ishiwata S (1990) Elastic filaments in skeletal muscle revealed by selective removal of thin filaments with plasma gelsolin. J Cell Biol 110:53–62

    Article  PubMed  CAS  Google Scholar 

  • Funatsu T, Kono E, Higuchi H, Kimura S, Ishiwata S, Yoshioka T, Maruyama K, Tsukita S (1993) Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments. J Cell Biol 120:711–724

    Article  PubMed  CAS  Google Scholar 

  • Furch M, Geeves MA, Manstein DJ (1998) Modulation of actin affinity and actomyosin adenosine triphosphatase by charge changes in the myosin motor domain. Biochemistry 37:6317–6326

    Article  PubMed  CAS  Google Scholar 

  • Galler S, Wang BG, Kawai M (2005) Elementary steps of the cross-bridge cycle in fast-twitch fiber types from rabbit skeletal muscles. Biophys J 89:3248–3260

    Article  PubMed  CAS  Google Scholar 

  • Geeves MA, Goody RS, Gutfreund H (1984) Kinetics of acto-S1 interaction as a guide to a model for the cross-bridge cycle. J Muscle Res Cell Motil 5:351–361

    Article  PubMed  CAS  Google Scholar 

  • Goldman YE, Hibberd MG, Trentham DR (1984) Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5′-triphosphate. J Physiol (Lond) 354:577–604

    CAS  Google Scholar 

  • Goldman YE, McCray JA, Ranatunga KW (1987) Transient tension changes initiated by laser temperature jumps in rabbit psoas muscle fibres. J Physiol (Lond) 392:71–95

    CAS  Google Scholar 

  • Gordon AM, Chen Y, Liang B, LaMadrid M, Luo Z, Chase PB (1998) Skeletal muscle regulatory proteins enhance F-actin in vitro motility. Adv Exp Med Biol 453:187–196

    PubMed  CAS  Google Scholar 

  • Heinl P, Kuhn HJ, Rüegg JC (1974) Tension responses to quick length changes of glycerinated skeletal muscle fibres from the frog and tortoise. J Physiol (Lond) 237:243–258

    CAS  Google Scholar 

  • Herrmann C, Wray J, Travers F, Barman T (1992) Effect of 2,3-butanedione monoxime on myosin and myofibrillar ATPases. An example of an uncompetitive inhibitor. Biochemistry 31:12227–12232

    Article  PubMed  CAS  Google Scholar 

  • Highsmith S (1977) The effects of temperature and salts on myosin subfragment-1 and F-actin association. Arch Biochem Biophys 180:404–408

    Article  PubMed  CAS  Google Scholar 

  • Higuchi H, Yanagida T, Goldman YE (1995) Compliance of thin filaments in skinned fibers of rabbit skeletal muscle. Biophys J 69:1000–1010

    PubMed  CAS  Google Scholar 

  • Hitchcock-DeGregori SE, An Y (1996) Integral repeats and a continuous coiled coil are required for binding of striated muscle tropomyosin to the regulated actin filament. J Biol Chem 16:3600–3603

    Google Scholar 

  • Hitchcock-DeGregori SE, Varnell TA (1990) Tm has discrete actin-binding sites with sevenfold and fourteenfold periodicities. J Mol Biol 214:885–896

    Article  PubMed  CAS  Google Scholar 

  • Holmes KC, Schroder RR, Sweeney HL, Houdusse A (2004) The structure of the rigor complex and its implications for the power stroke. Phil Trans Roy Soc Lond B Biol Sci 359:1819–1828

    Article  CAS  Google Scholar 

  • Homsher E, Lee DM, Morris C, Pavlov D, Tobacman LS (2000) Regulation of force and unloaded sliding speed in single thin filaments: effects of regulatory proteins and calcium. J Physiol (Lond) 524:233–243

    Article  CAS  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Chem 7:255–318

    CAS  Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  PubMed  CAS  ADS  Google Scholar 

  • Huxley HE, Stewart A, Sosa H, Irving T (1994) X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys J 67:2411–2421

    PubMed  CAS  Google Scholar 

  • Ishiwata S (1973) A study on the F-actin, tropomyosin and troponin complex. I. Gel-filament transformation. Biochim Biophys Acta 303:77–89

    PubMed  CAS  Google Scholar 

  • Ishiwata S, Funatsu T (1985) Does actin bind to the ends of thin filaments in skeletal muscle?. J Cell Biol 100:282–291

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata S, Funatsu T, Fujita H (1998) Contractile properties of thin (actin) filament-reconstituted muscle fibers. Adv Exp Med Biol 453:319–329

    PubMed  CAS  Google Scholar 

  • Ishiwata S, Kondo H (1978) Studies on the F-actin–tropomyosin–troponin complex. II. Partial reconstitution of thin filament by F-actin, tropomyosin and tropomyosin binding component of troponin (TNT). Biochim Biophys Acta 534:341–349

    PubMed  CAS  Google Scholar 

  • Ishiwata S, Manuck BA, Seidel JC, Gergely J (1986) Saturation transfer electron paramagnetic resonance study of the mobility of myosin heads in myofibrils under conditions of partial dissociation. Biophys J 49:821–828

    PubMed  CAS  Google Scholar 

  • Joel PB, Trybus KM, Sweeney HL (2001) Two conserved lysines at the 50/20-kda junction of myosin are necessary for triggering actin activation. J Biol Chem 276:2998–3003

    Article  PubMed  CAS  Google Scholar 

  • Kawai M (2003) What do we learn by studying the temperature effect on isometric tension and tension transients in mammalian striated muscle fibres?. J Muscle Res Cell Motil 24:127–138

    Article  PubMed  MathSciNet  Google Scholar 

  • Kawai M, Brandt PW (1980) Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J Muscle Res Cell Motil 1:279–303

    Article  PubMed  CAS  Google Scholar 

  • Kawai M, Halvorson HR (1991) Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned fibers of rabbit psoas muscle. Biophys J 59:329–342

    PubMed  CAS  Google Scholar 

  • Kawai M, Kido T, Vogel M, Fink RH, Ishiwata S (2006) Temperature change does not affect force between regulated actin filaments and HMM in single molecule experiments. J Physiol (Lond) 574(pt 3):877–887

    Google Scholar 

  • Kawai M, Saeki Y, Zhao Y (1993) Crossbridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret. Circ Res 73:35–50

    PubMed  CAS  Google Scholar 

  • Kawai M, Zhao Y (1993) Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers. Biophys J 65:638–651

    PubMed  CAS  Google Scholar 

  • Kitamura K, Tokunaga M, Iwane AH, Yanagida T (1999) A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397:129–134

    Article  PubMed  CAS  ADS  Google Scholar 

  • Kurokawa H, Fujii W, Ohmi K, Sakurai T, Nonomura Y (1990) Simple and rapid purification of brevin. Biochem Biophys Res Commun 168:451–457

    Article  PubMed  CAS  Google Scholar 

  • Landis CA, Bobkova A, Homsher E, Tobacman LS (1997) The active state of the thin filament is destabilized by an internal deletion in tropomyosin. J Biol Chem 272:14051–14056

    Article  PubMed  CAS  Google Scholar 

  • Littlefield R, Fowler VM (1998) Defining actin filament length in striated muscle: rulers and caps or dynamic stability?. Annu Rev Cell Dev Biol 14:487–525

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Bryant MK, Bryan KE, Rubenstein PA, Kawai M (2005) Role of the N-terminal negative charges of actin in force generation and cross-bridge kinetics in reconstituted bovine cardiac muscle fibres. J Physiol (Lond) 564:65–82

    Article  CAS  Google Scholar 

  • Lu X, Heeley DH, Smillie LB, Kawai M (2006) Effects of tropomyosin (Tm) isoforms and phosphorylation on isometric tension and cross-bridge kinetics in bovine myocardium. Biophys J 90:120a (Abstr #558)

    Article  CAS  Google Scholar 

  • Lu X, Tobacman LS, Kawai M (2003) Effects of tropomyosin internal deletion Delta23Tm on isometric tension and the cross-bridge kinetics in bovine myocardium. J Physiol (Lond) 553.2:457–471

    Article  CAS  Google Scholar 

  • Maruyama K, Natori R, Nonomura Y (1976) New elastic protein from muscle. Nature 262:58–60

    Article  PubMed  CAS  ADS  Google Scholar 

  • McKillop DFA, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65:693–701

    PubMed  CAS  Google Scholar 

  • Metzger JM, Greaser ML, Moss RL (1989) Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle. J Gen Physiol 93:855–883

    Article  PubMed  CAS  Google Scholar 

  • Moncman CL, Wang K (1995) Nebulette: a 107 kD nebulin-like protein in cardiac muscle. Cell Motil Cytoskeleton 32:205–225

    Article  PubMed  CAS  Google Scholar 

  • Murphy KP, Zhao Y, Kawai M (1996) Molecular forces involved in force generation during skeletal muscle contraction. J Exp Biol 199:2565–2571

    PubMed  CAS  Google Scholar 

  • Oosawa F, Fujime S, Ishiwata S, Mihashi K (1972) Dynamic property of F-actin and thin filament. Cold Spr Harb Symp Quant Biol 37:277–285

    Google Scholar 

  • Poggesi C, Tesi C, Stehle R (2005) Sarcomeric determinants of striated muscle relaxation kinetics. Pflugers Arch 449:505–517

    Article  PubMed  CAS  Google Scholar 

  • Pringle JWS (1967) The contractile mechanism of insect fibrillar muscle. Prog Biophys Mol Biol 17:1–60

    Article  PubMed  CAS  Google Scholar 

  • Ranatunga KW (1999) Endothermic force generation in skinned cardiac muscle from rat. J Muscle Res Cell Motil 20:489–496

    Article  PubMed  CAS  Google Scholar 

  • Ranatunga KW, Sharpe B, Turnbull B (1987) Contraction of human skeletal muscle at different temperatures. J Physiol (Lond) 390:383–395

    CAS  Google Scholar 

  • Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993) Structure of the actin–myosin complex and its implications for muscle contraction. Science 261:58–65

    PubMed  CAS  ADS  Google Scholar 

  • Reuben JP, Brandt PW, Berman M, Grundfest H (1971) Regulation of tension in the skinned crayfish muscle fiber. I. Contraction and relaxation in the absence of Ca (pCa is greater than 9). J Gen Physiol 57:385–407

    Article  PubMed  CAS  Google Scholar 

  • Stehle R, Telley IA, Pfitzer G (2005) Transient kinetics in force and indivisual sarcomere lengths induced by phosphate. Biophys J 88:127a (Abstr #624)

    Google Scholar 

  • Sutoh K (1982a) Identification of myosin-binding sites on the actin sequence. Biochemistry 21:3654–3661

    Article  CAS  Google Scholar 

  • Sutoh K (1982b) An actin-binding site on the 20K fragment of myosin subfragment 1. Biochemistry 21:4800–4804

    Article  CAS  Google Scholar 

  • Sutoh K, Ando M, Sutoh K, Toyoshima YY (1991) Site-directed mutations of Dictyostelium actin: disruption of a negative charge cluster at the N terminus. Proc Natl Acad Sci USA 88:7711–7714

    Article  PubMed  CAS  ADS  Google Scholar 

  • Taylor EW (1979) Mechanism of actomyosin ATPase and the problem of muscle contraction. CRC Crit Rev Biochem 6:103–164

    PubMed  Google Scholar 

  • Tobacman LS, Butters CA (2000) A new model of cooperative myosin-thin filament binding. J Biol Chem 275:27587–27593

    PubMed  CAS  Google Scholar 

  • Tonomura Y, Tokura S, Sekiya K (1962) Binding of myosin A to F-actin. J Biol Chem 237:1074–1081

    PubMed  CAS  Google Scholar 

  • Van Buren P, Palmiter KA, Warshaw DM (1999) Tropomyosin directly modulates ctomyosin mechanical performance at the level of a single actin filament. Proc Natl Acad Sci USA 96:12488–12493

    Article  ADS  Google Scholar 

  • Vandekerckhove J, Weber K (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126:783–802

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K, Sugimoto Y, Tanaka H, Ueno Y, Takezawa Y, Amemiya Y (1994) X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys J 67:2422–2435

    PubMed  CAS  Google Scholar 

  • Wang G, Kawai M (1997) Force generation and phosphate release steps in skinned rabbit soleus slow-twitch muscle fibers. Biophys J 73:878–894

    PubMed  CAS  Google Scholar 

  • Wang G, Kawai M (2001) Effect of temperature on elementary steps of the cross-bridge cycle in rabbit soleus slow-twitch muscle fibres. J Physiol (Lond) 531:219–234

    Article  CAS  Google Scholar 

  • Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 76:3698–3702

    Article  PubMed  CAS  ADS  Google Scholar 

  • Wang K, Wright J (1988) Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol 107:2199–2212

    Article  PubMed  CAS  Google Scholar 

  • Wannenburg T, Heijne GH, Geerdink JH, Van den Dool HW, Janssen PML, de Tombe PP (2000) Cross-bridge kinetics in rat myocardium: effect of sarcomere length and calcium activation. Am J Physiol 279:H779–H790

    CAS  Google Scholar 

  • White DCS, Thorson J (1974) The kinetics of muscle contraction. Prog Biophys Mol Biol 27:173–255

    Article  Google Scholar 

  • Wolska BM, Wieczorek DF (2003) The role of tropomyosin in the regulation of myocardial contraction and relaxation. Pflugers Arch 446:1–8

    CAS  Google Scholar 

  • Zhao Y, Kawai M (1994a) Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers. Biosphys J 67:1655–1668

    Article  CAS  Google Scholar 

  • Zhao Y, Kawai M (1994b) BDM affects nucleotide binding and force generation steps of the cross-bridge cycle in rabbit psoas muscle fibres. Am J Physiol (Cell Physiol 35) 266:C437–C447

    CAS  Google Scholar 

  • Zhao Y, Kawai M (1996) Inotropic agent EMD-53998 weakens nucleotide and phosphate binding to cross bridges in porcine myocardium. Am J Physiol (Heart Circ Physiol 40) 271:H1394–H1406

    CAS  Google Scholar 

  • Zhao Y, Swamy PMG, Humphries KA, Kawai M (1996) The effect of partial extraction of troponin C on the elementary steps of the cross-bridge cycle in rabbit psoas muscle fibers. Biophys J 71:2759–2773

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Hideaki Fujita for drawing Fig. 1, and to Dr. Madoka Suzuki and Ms. Kristen Stanton for critical reading of the manuscript. This work was supported in part by an NIH grant HL70041 to MK, and by Grants-in-Aid for Specially Promoted Research and for the 21st Century COE program (Physics of Self-organization Systems), and by “Establishment of Consolidated Research Institute for Advanced Science and Medical Care” from the Ministry of Education, Sports, Culture, Science and Technology of Japan to SI. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official view of awarding organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Kawai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, M., Ishiwata, S. Use of thin filament reconstituted muscle fibres to probe the mechanism of force generation. J Muscle Res Cell Motil 27, 455–468 (2006). https://doi.org/10.1007/s10974-006-9075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-006-9075-4

Keywords

Navigation