Skip to main content
Log in

Comparative analysis on the forced and mixed convection in a hybrid nanofluid flow over a stretching surface: a numerical analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ag and Al2O3 nanoparticles in a water-based hybrid nanofluid flow on an elongating sheet have several potential applications, particularly in heat transfers, thermal engineering, and material science. Furthermore, enhanced heat transfer, improved cooling systems, heat exchangers, biomedical applications, solar energy systems, textile industries, and oil recovery are the other engineering and biomedical applications. These applications show how versatile and advantageous Ag and Al2O3 nanoparticles can be used in water-based hybrid nanofluids for a range of scientific and engineering applications, especially when it comes to heat transfer and fluid dynamics over the stretching surfaces with mixed convection phenomena. Therefore, in this effort, a comparative analysis of the forced convection and mixed convective flows of a hybrid nanofluid on a stretching sheet is portrayed. Two types of nanoparticles, which include Ag and Al2O3 nanoparticles, are mixed with water to obtain a hybrid nanofluid. The prime focus of this analysis is to examine the hybrid nanofluid flow under two different cases: mixed convection and forced convection. A magnetic field is imposed normal to the direction of flow. A numerical analysis is conducted by using the bvp4c approach. The data of the modeled problem are matched with earlier literature, which authenticates the correctness of the present model. Viscous dissipation, heat source, and Joule heating are employed in current work. The obtained results show that the impression of a magnetic factor on the x-direction velocity profile is more dominant for mixed convective factors than forced convection. However, in the case of y-direction velocity, the opposite impact of the magnetic factor is observed. The results of the rotation factor are more significant along x-direction velocity for forced convection, while this effect is reversed for y-direction velocity. By comparing the results obtained in the present analysis, the impacts of embedded factors on the thermal distribution are more significant and streamlines are closer for forced convection matched to mixed convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data used in this manuscript have been presented within the article.

Abbreviations

A :

Constant \(\left( - \right)\)

\(B_{0}\) :

Strength of magnetic field \(\left( {{\text{kg}}\;{\text{s}}^{ - 1} \;{\text{A}}^{ - 1} } \right)\)

\(C_{{\text{p}}}\) :

Specific heat \(\left( {{\text{J}}\;{\text{kg}}^{ - 1} \;{\text{K}}^{ - 1} } \right)\)

\(g\) :

Gravitational acceleration \(\left( {{\text{m}}^{2} \;{\text{s}}^{ - 1} } \right)\)

\(h_{{\text{f}}}\) :

Heat transfer coefficient \(\left( {{\text{W}}\;{\text{m}}^{ - 1} \;{\text{K}}^{ - 1} } \right)\)

\(k\) :

Thermal conductivity \(\left( {{\text{W}}\;{\text{m}}^{ - 1} \;{\text{K}}^{ - 1} } \right)\)

\(Q\) :

Heat source coefficient \(\left( {{\text{W}}\;{\text{m}}^{ - 3} \;{\text{K}}^{ - 1} } \right)\)

\(T_{{\text{f}}}\) :

Working fluid temperature \(\left( {\text{K}} \right)\)

\(T_{{\text{w}}}\) :

Surface temperature \(\left( {\text{K}} \right)\)

\(T_{\infty }\) :

Free-stream temperature \(\left( {\text{K}} \right)\)

\(u_{{\text{w}}}\) :

Stretching velocity \(\left( {{\text{m}}\;{\text{s}}^{ - 1} } \right)\)

u, v, w :

Velocity components \(\left( {{\text{m}}\;{\text{s}}^{ - 1} } \right)\)

x, y, z :

Coordinates \(\left( {\text{m}} \right)\)

\(\mho \) :

Angular velocity \(\left( {{\text{s}}^{ - 1} } \right)\)

\(\mu\) :

Dynamic viscosity \(\left( {{\text{kg}}\;{\text{m}}^{ - 1} \;{\text{s}}^{ - 1} } \right)\)

\(\rho\) :

Density \(\left( {{\text{kg}}\;{\text{m}}^{ - 3} } \right)\)

\(\beta_{{\text{T}}}\) :

Thermal expansion \(\left( {{\text{K}}^{ - 1} } \right)\)

\(\sigma\) :

Electrical conductivity \(\left( {\Omega \;{\text{m}}^{ - 1} } \right)\)

\(\varphi_{1}\), \(\varphi_{2}\) :

Volume fraction of 1st and 2nd nanoparticles

\(\nu_{{\text{f}}}\) :

Kinematic viscosity \(\left( {{\text{m}}^{2} \;{\text{s}}^{ - 1} } \right)\)

\({\text{Bi}}\) :

Thermal Biot number \(\left( - \right)\)

\({\text{Ec}}\) :

Eckert number \(\left( - \right)\)

\(H_{{\text{S}}}\) :

Heat source factor \(\left( - \right)\)

\(M\) :

Magnetic factor \(\left( - \right)\)

\(\Pr\) :

Prandtl number \(\left( - \right)\)

\({\text{Ri}}\) :

Richardson number \(\left( - \right)\)

\(\gamma\) :

Rotation factor \(\left( - \right)\)

Ag:

Silver nanoparticles

Al2O3 :

Alumina nanoparticles

\({\text{f}}\) :

Fluid

\({\text{nf}}\) :

Nanofluid

\({\text{hnf}}\) :

Hybrid nanofluid

References

  1. Yavari R, Abed AM, Akbari OA, Marzban A, Baghaei S. Numerical study of flow and free convection of water/silver nanofluid in a circular cavity influenced by hot fluid flow. Prog Nucl Energy. 2022;153: 104378.

    Article  CAS  Google Scholar 

  2. Shahzad H, Ain QU, Pasha AA, Irshad K, Shah IA, Ghaffari A, Hafeez MB, Krawczuk M. Double-diffusive natural convection energy transfer in magnetically influenced Casson fluid flow in trapezoidal enclosure with fillets. Int Commun Heat Mass Transf. 2022;137: 106236.

    Article  Google Scholar 

  3. Lim YJ, Shafie S, Isa SM, Rawi NA, Mohamad AQ. Impact of chemical reaction, thermal radiation and porosity on free convection Carreau fluid flow towards a stretching cylinder. Alex Eng J. 2022;61:4701–17.

    Article  Google Scholar 

  4. Cui J, Razzaq R, Farooq U, Khan WA, Farooq FB, Muhammad T. Impact of non-similar modeling for forced convection analysis of nano-fluid flow over stretching sheet with chemical reaction and heat generation. Alex Eng J. 2022;61:4253–61. https://doi.org/10.1016/J.AEJ.2021.09.045.

    Article  Google Scholar 

  5. Hamidi E, Ganesan P, Muniandy SV, Hassan MHA. Lattice Boltzmann Method simulation of flow and forced convective heat transfer on 3D micro X-ray tomography of metal foam heat sink. Int J Therm Sci. 2022;172: 107240.

    Article  Google Scholar 

  6. Xiu W, Animasaun IL, Al-Mdallal QM, Alzahrani AK, Muhammad T. Dynamics of ternary-hybrid nanofluids due to dual stretching on wedge surfaces when volume of nanoparticles is small and large: forced convection of water at different temperatures. Int Commun Heat Mass Transf. 2022;137: 106241.

    Article  CAS  Google Scholar 

  7. Arif MS, Abodayeh K, Nawaz Y. The modified finite element method for heat and mass transfer of unsteady reacting flow with mixed convection. Front Phys. 2022;10: 952787.

    Article  Google Scholar 

  8. Patel HR. Cross diffusion and heat generation effects on mixed convection stagnation point MHD Carreau fluid flow in a porous medium. Int J Ambient Energy. 2021;1–16.

  9. Islam S, Khan A, Kumam P, Alrabaiah H, Shah Z, Khan W, Zubair M, Jawad M. Radiative mixed convection flow of maxwell nanofluid over a stretching cylinder with joule heating and heat source/sink effects. Sci Rep. 2020;10:1–18.

    Article  Google Scholar 

  10. Song Y-Q, Hamid A, Sun T-C, Khan MI, Qayyum S, Kumar RN, Prasannakumara BC, Khan SU, Chinram R. Unsteady mixed convection flow of magneto-Williamson nanofluid due to stretched cylinder with significant non-uniform heat source/sink features. Alex Eng J. 2022;61:195–206.

    Article  Google Scholar 

  11. Ram MS, Spandana K, Shamshuddin M, Salawu SO. Mixed convective heat and mass transfer in magnetized micropolar fluid flow toward stagnation point on a porous stretching sheet with heat source/sink and variable species reaction. Int J Model Simul. 2022;1–13.

  12. Haq I, Bilal M, Ahammad NA, Ghoneim ME, Ali A, Weera W. Mixed convection nanofluid flow with heat source and chemical reaction over an inclined irregular surface. ACS Omega. 2022;7:30477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Usman, Memon AA, Alghamdi M, Muhammad T. A forced convection of water aluminum oxide nanofluid flow and heat transfer study for a three dimensional annular with inner rotated cylinder. Sci Rep. 2022;12:16735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dawar A, Thumma T, Islam S, Shah Z. Optimization of response function on hydromagnetic buoyancy-driven rotating flow considering particle diameter and interfacial layer effects: homotopy and sensitivity analysis. Int Commun Heat Mass Transf. 2023;144: 106770. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2023.106770.

    Article  CAS  Google Scholar 

  15. Choi S, Eastman J. Enhancing thermal conductivity of fluids with nanoparticles, (1995). https://www.osti.gov/biblio/196525. Accessed 10 Sep 2021.

  16. Babapoor A, Haghighi AR, Jokar SM, Ahmadi Mezjin M. The performance enhancement of paraffin as a PCM during the solidification process: utilization of graphene and metal oxide nanoparticles. Iran J Chem Chem Eng. 2022;41:37–48.

    CAS  Google Scholar 

  17. Bhatti MM, Arain MB, Zeeshan A, Ellahi R, Doranehgard MH. Swimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: application of thermal energy storage. J Energy Storage. 2022;45: 103511.

    Article  Google Scholar 

  18. Varun Kumar RS, GunderiDhananjaya P, Naveen Kumar R, Punith Gowda RJ, Prasannakumara BC. Modeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reaction. Int J Comput Methods Eng Sci Mech. 2022;23:12–9.

    Article  CAS  Google Scholar 

  19. Acharya N, Mabood F, Shahzad SA, Badruddin IA. Hydrothermal variations of radiative nanofluid flow by the influence of nanoparticles diameter and nanolayer. Int Commun Heat Mass Transf. 2022;130: 105781. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2021.105781.

    Article  CAS  Google Scholar 

  20. Shahid A, Bhatti MM, Ellahi R, Mekheimer KS. Numerical experiment to examine activation energy and bi-convection Carreau nanofluid flow on an upper paraboloid porous surface: application in solar energy. Sustain Energy Technol Assess. 2022;52: 102029.

    Google Scholar 

  21. Zhang L, Bhatti MM, Michaelides EE, Marin M, Ellahi R. Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field. Eur Phys J Spec Top. 2022;231:521–33.

    Article  CAS  Google Scholar 

  22. Wang J, Xu Y-P, Qahiti R, Jafaryar M, Alazwari MA, Abu-Hamdeh NH, Issakhov A, Selim MM. Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability. J Pet Sci Eng. 2022;208: 109734.

    Article  CAS  Google Scholar 

  23. Ojjela O. Numerical investigation of heat transport in Alumina-Silica hybrid nanofluid flow with modeling and simulation. Math Comput Simul. 2022;193:100–22.

    Article  Google Scholar 

  24. Akhter R, Ali MM, Alim MA. Entropy generation due to hydromagnetic buoyancy-driven hybrid-nanofluid flow in partially heated porous cavity containing heat conductive obstacle. Alex Eng J. 2023;62:17–45.

    Article  Google Scholar 

  25. Chu Y, Bashir S, Ramzan M, Malik MY. Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math Methods Appl Sci. 2023;46:11568–82.

    Article  Google Scholar 

  26. Ullah H, Ullah K, Raja MAZ, Shoaib M, Nisar KS, Islam S, Weera W, Al-Harbi N. Numerical treatment of squeezed MHD Jeffrey fluid flow with Cattaneo Chrisstov heat flux in a rotating frame using Levnberg-Marquard method. Alex Eng J. 2023;66:1031–50.

    Article  Google Scholar 

  27. VenkataRamudu AC, Anantha Kumar K, Sugunamma V. Application of heat transfer on MHD shear thickening fluid flow past a stretched surface with variable heat source/sink. Heat Transf. 2023;52:1161–77.

    Article  Google Scholar 

  28. Bejawada SG, Nandeppanavar MM. Effect of thermal radiation on magnetohydrodynamics heat transfer micropolar fluid flow over a vertical moving porous plate. Exp Comput Multiph Flow. 2023;5:149–58.

    Article  Google Scholar 

  29. Ebiwareme L, Bunonyo KW, Davies OA. Heat transfer analysis of magnetohydrodynamics fluid flow past an infinite vertical porous plate in the presence of suction: the Adomian decomposition approach. Am J Eng Res. 2023;12:146–60.

    Google Scholar 

  30. Abbas Z, Mehdi I, Hasnain J, Alzahrani AK, Asma M. Homogeneous-heterogeneous reactions in MHD mixed convection fluid flow between concentric cylinders with heat generation and heat absorption. Case Stud Therm Eng. 2023;42: 102718.

    Article  Google Scholar 

  31. Majeed AH, Mahmood R, Shahzad H, Pasha AA, Raizah ZA, Hosham HA, Reddy DSK, Hafeez MB. Heat and mass transfer characteristics in MHD Casson fluid flow over a cylinder in a wavy channel: higher-order FEM computations. Case Stud Therm Eng. 2023;42: 102730.

    Article  Google Scholar 

  32. Awais M, Salahuddin T, Muhammad S. Effects of viscous dissipation and activation energy for the MHD Eyring-powell fluid flow with Darcy-Forchheimer and variable fluid properties. Ain Shams Eng J. 2023;102422.

  33. Ahmed J, Nazir F, Fadhl BM, Makhdoum BM, Mahmoud Z, Mohamed A, Khan I. Magneto-bioconvection flow of Casson nanofluid configured by a rotating disk in the presence of gyrotatic microorganisms and Joule heating. Heliyon. 2023;9.

  34. Awan SE, Awais M, Shamim R, Raja MAZ. Novel design of intelligent Bayesian networks to study the impact of magnetic field and Joule heating in hybrid nanomaterial flow with applications in medications for blood circulation. Tribol Int. 2023;189: 108914.

    Article  CAS  Google Scholar 

  35. Adnan, Ashraf W, Joule heating and heat generation/absorption effects on the heat transfer mechanism in ternary nanofluid containing different shape factors in stretchable converging/diverging Channel. Waves Random Complex Media. 2023;1–18.

  36. Pasha AA, Irshad K, Algarni S, Alqahtani T, Waqas M. Analysis of tangent-hyperbolic rheological model considering nonlinear mixed convection, Joule heating and Soret-Dufour aspects from a stretchable convective stratified surface. Int Commun Heat Mass Transf. 2023;140: 106519.

    Article  Google Scholar 

  37. Makhdoum BM, Mahmood Z, Khan U, Fadhl BM, Khan I, Eldin SM. Impact of suction with nanoparticles aggregation and joule heating on unsteady MHD stagnation point flow of nanofluids over horizontal cylinder. Heliyon. 2023;9.

  38. Rafique K, Mahmood Z, Alqahtani H, Eldin SM. Various nanoparticle shapes and quadratic velocity impacts on entropy generation and MHD flow over a stretching sheet with joule heating. Alex Eng J. 2023;71:147–59.

    Article  Google Scholar 

  39. Abo-Dahab SM, Mohamed RA, Abd-Alla AM, Soliman MS. Double-diffusive peristaltic MHD Sisko nanofluid flow through a porous medium in presence of non-linear thermal radiation, heat generation/absorption, and Joule heating. Sci Rep. 2023;13:1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Panda S, Bhowmik A, Das R, Repaka R, Martha SC. Application of homotopy analysis method and inverse solution of a rectangular wet fin. Energy Convers Manag. 2014;80:305–18.

    Article  Google Scholar 

  41. Mallick A, Ranjan R, Das R. Application of homotopy perturbation method and inverse prediction of thermal parameters for an annular fin subjected to thermal load. J Therm Stress. 2016;39:298–313.

    Article  Google Scholar 

  42. Singla RK, Das R. Application of decomposition method and inverse prediction of parameters in a moving fin. Energy Convers Manag. 2014;84:268–81.

    Article  Google Scholar 

  43. Kundu B, Das R, Lee K-S. Differential transform method for thermal analysis of exponential fins under sensible and latent heat transfer. Procedia Eng. 2015;127:287–94.

    Article  Google Scholar 

  44. Sangeetha E, De P, Das R. Hall and ion effects on bioconvective Maxwell nanofluid in non-darcy porous medium. Spec Top Rev Porous Media Int J. 2023;14 .

  45. Painuly A, Mishra NK, Zainith P, Das R. Numerical analysis of a helically corrugated tube using a novel combination of W/EG-based non-Newtonian hybrid nanofluid. Numer Heat Transf Part A Appl. 2023;1–22.

  46. Ramesh GK, Madhukesh JK, Das R, Shah NA, Yook S-J. Thermodynamic activity of a ternary nanofluid flow passing through a permeable slipped surface with heat source and sink. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2053237.

    Article  Google Scholar 

  47. Deb S, Mahesh KP, Das M, Das DC, Pal S, Das R, Das AK. Flow boiling heat transfer characteristics over horizontal smooth and microfin tubes: an empirical investigation utilizing R407c. Int J Therm Sci. 2023;188: 108239.

    Article  CAS  Google Scholar 

  48. Deb S, Das M, Das DC, Pal S, Das R, Das AK. Evaluation of flow boiling heat transfer in horizontal circular trapezoidal-shaped microfin tube. Heat Mass Transf. 2023;59:1931–47.

    Article  CAS  Google Scholar 

  49. Deb S, Das M, Das DC, Pal S, Das AK, Das R. Significance of surface modification on nucleate pool boiling heat transfer characteristics of refrigerant R-141b. Int J Heat Mass Transf. 2021;170: 120994.

    Article  CAS  Google Scholar 

  50. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.

    Article  CAS  Google Scholar 

  51. Dawar A, Said NM, Islam S, Shah Z, Mahmuod SR, Wakif A. A semi-analytical passive strategy to examine a magnetized heterogeneous mixture having sodium alginate liquid with alumina and copper nanomaterials near a convectively heated surface of a stretching curved geometry. Int Commun Heat Mass Transf. 2022;139: 106452.

    Article  CAS  Google Scholar 

  52. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11:151–70.

    Article  CAS  Google Scholar 

  53. Cruz RCD, Reinshagen J, Oberacker R, Segadães AM, Hoffmann MJ. Electrical conductivity and stability of concentrated aqueous alumina suspensions. J Colloid Interface Sci. 2005;286:579–88.

    Article  CAS  PubMed  Google Scholar 

  54. Maxwell J. A treatise on electricity and magnetism, 1904.

  55. Das S, Ali A, Jana RN, Makinde OD. EDL impact on mixed magneto-convection in a vertical channel using ternary hybrid nanofluid. Chem Eng J Adv. 2022;12: 100412.

    Article  CAS  Google Scholar 

  56. Wang CY. Stretching a surface in a rotating fluid. Z Angew Math Phys ZAMP. 1988;39:177–85.

    Article  Google Scholar 

  57. Ibrahim W, Gamachu D. Finite element method solution of mixed convection flow of Williamson nanofluid past a radially stretching sheet. Heat Transf Asian Res. 2019. https://doi.org/10.1002/htj.21639.

    Article  Google Scholar 

  58. Ibrahim W, Anbessa T. Mixed convection flow of nanofluid with Hall and ion-slip effects using spectral relaxation method. J Egypt Math Soc. 2019;27:1–21.

    Article  Google Scholar 

  59. Ahmad U, Ashraf M, Abbas A, Rashad AM, Nabwey HA. Mixed convection flow along a curved surface in the presence of exothermic catalytic chemical reaction. Sci Rep. 2021;11:1–10.

    Article  Google Scholar 

  60. Rasool G, Wakif A. Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno’s nanofluid model. J Therm Anal Calorim. 2021;143:2379–93. https://doi.org/10.1007/S10973-020-09865-8/TABLES/4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.S. and H.Y.; methodology, H.A.; software, A.S.; E.A.A.; validation, F.M.A., H.A. and S.A.L.; formal analysis, E.A.A. and F.M.A.; investigation, H.A. and A.S.; writing—original draft preparation, F.M.A. and S.A.L.; writing—review and editing, H.Y. and S.A.L.; visualization, H.Y. and E.A.A. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ebrahem A. Algehyne or Humaira Yasmin.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algehyne, E.A., Alamrani, F.M., Alrabaiah, H. et al. Comparative analysis on the forced and mixed convection in a hybrid nanofluid flow over a stretching surface: a numerical analysis. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13178-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13178-5

Keywords

Navigation