Skip to main content
Log in

Investigation of unsteady nanofluid over half infinite domain under the action of parametric effects and EPNM

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The EPNM (Effective Prandtl Number Model) is a significant single phase nanofluid model developed for γAl2O3/H2O. This model includes up to quadratic nanoparticles concentration factor which contributes potentially in the performance of γAl2O3/H2O. As, the Al2O3 nanoparticles gained much popularity because of their promising properties. Therefore, a new novel model based analysis is conducted in this research through a rotating disc. The influential applications of such geometry exist in brakes, gears, gas turbines and flywheels etc. To make the model more reliable for multiple applications, the essential physical constituents like exponentially growing heat source, normal magnetic field, and Joule heating etc. variations are taken. A comprehensive analysis of the model is then performed via numerical way and interpreted the results. Impacts of Al2O3 concentration on the characteristics of nanofluid, thermal behavior, shear drag and heat transport rate are analyzed. In the view of presented study, it is observed that the addition of nanoparticles in the common working fluids potentially affects the basic properties of fluids which make them more influential for the practical applications. The effective Prandtl number increased from 1.00039 to 1.00237, dynamic viscosity from 1.00037 to 1.00442, electrical conductivity from 1.0003 to 1.0018, and heat capacity from 0.999973 to 0.999836 when the Al2O3 amount is taken from 0.001 to 0.006%. Further, the temperature performance improved when heating source range selected 0.1–0.7 and it diminishes against \(M=\mathrm{1.0,2.0,3.0,4.0}\), and \(\lambda =\mathrm{0.1,0.2,0.3,0.4}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(\widetilde{u}, \widetilde{v}\) :

Velocities (m s−1)

\(\widetilde{T}\) :

Temperature (K)

\(\widetilde{{T}_{{\text{s}}}}\) :

Surface temperature (K)

\({\widetilde{T}}_{\infty }\) :

Temperature at ambient position (K)

\({L}_{1}\) :

Arbitrary constant

\({\rho }_{{\text{nf}}}\) :

Density (kg m−3)

\({\rho }_{{\text{s}}}\) :

Particles density (kg m−3)

\({\rho }_{{\text{f}}}\) :

Basic fluid’s density (kg m−3)

\({\sigma }_{{\text{nf}}}\) :

Electrical conductivity (S m−1)

\({\sigma }_{{\text{s}}}\) :

Particles electrical conductivity (S m−1)

\({\sigma }_{{\text{f}}}\) :

Basic fluid’s electrical conductivity (S m−1)

\({\mu }_{{\text{nf}}}\) :

Dynamic viscosity (kg m−1 s−1)

\({\mu }_{{\text{f}}}\) :

Basic fluid’s dynamic viscosity (kg m−1 s−1)

\({k}_{{\text{nf}}}\) :

Thermal conductivity (W m−1 K−1)

\({k}_{{\text{s}}}\) :

Particles thermal conductivity (W m−1 K−1)

\({k}_{{\text{f}}}\) :

Basic fluid’s thermal conductivity (W m−1 K−1)

\(\phi\) :

Nano particles concentration

\(\eta\) :

Dimensionless variable

\(S\) :

Unsteady parameter

\(M\) :

Hartmann number

\({\text{Pr}}\) :

Prandtl number

\(Q\) :

Heat generation number

\({\text{Ec}}\) :

Eckert number

\(\gamma\) :

Velocity slip number

\(F^{\prime}\) :

Dimensionless velocity

\(\beta\) :

Dimensionless temperature

\({C}_{{\text{F}}}\) :

Skin friction

\({\text{Nu}}\) :

Nusselt number

References

  1. Abbas W, Sayed ME, Mutasem ZBF. Numerical investigation of non-transient comparative heat transport mechanism in ternary nanofluid under various physical constraints. AIMS Math. 2023;8(7):15932–49.

    Article  Google Scholar 

  2. Muir P, Fairweather G, Nayagam N. The effect of Prandtl number on heat transfer from an isothermal rotating disk with blowing at the wall. Int Commun Heat Mass Transfer. 1983;10(4):287–97.

    Article  Google Scholar 

  3. Mahmud K, Duraihem Z, Saleem S. Heat transport in inclined flow towards a rotating disk under MHD. Sci Rep. 2023. https://doi.org/10.1038/s41598-023-32828-6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ali I, Gul T, Khan A. Unsteady Hydromagnetic flow over an inclined rotating disk through neural networking approach. Mathematics. 2023. https://doi.org/10.3390/math11081893.

    Article  Google Scholar 

  5. Acharya N, Maity S, Kundu K. Entropy generation optimization of unsteady radiative hybrid nanofluid flow over a slippery disk. Part C J Mech Eng Sci. 2022. https://doi.org/10.1177/09544062211065384.

    Article  Google Scholar 

  6. Li J, Zhang X, Xu B, Yuan M. Nanofluid research and applications: a review. Int Commun Heat Mass Transfer. 2021. https://doi.org/10.1016/j.icheatmasstransfer.2021.105543.

    Article  Google Scholar 

  7. Prasannakumara BC, Madhukesh JK, Ramesh GK. Bioconvective nanofluid flow over an exponential stretched sheet with thermophoretic particle deposition. Propulsion Power Res. 2023;12(2):284–96.

    Article  Google Scholar 

  8. Murshed S, Leong K, Yang C. Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci. 2005;44(4):367–73.

    Article  CAS  Google Scholar 

  9. Bilal A, Sidra J, Al-Essa LA, Zafar M, Al-Bossly A, Alduais FS. Boundary layer and heat transfer analysis of mixed convective nanofluid flow capturing the aspects of nanoparticles over a needle. Mater Today Commun. 2023. https://doi.org/10.1016/j.mtcomm.2023.106253.

    Article  Google Scholar 

  10. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64.

    Article  CAS  Google Scholar 

  11. Rafati M, Hamidi A, Niaser M. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Appl Therm Eng. 2012;45:9–14.

    Article  Google Scholar 

  12. Shukla S, Sharma RP, Gowda RJP, Prasannakumara BC. Elastic deformation effect on carboxymethyl cellulose water-based (TiO2–Ti6Al4V) hybrid nanoliquid over a stretching sheet with an induced magnetic field. Numer Heat Transf Part A: Applications. 2023;84(11):1401–15.

    Article  CAS  Google Scholar 

  13. Ali N, Teixeira A, Addali A. A review on nanofluids:fabrication, stability, and thermophysical properties. J Nanomater. 2018. https://doi.org/10.1155/2018/6978130.

    Article  Google Scholar 

  14. Nonlaopon K, Khan A, Sulaiman M, Alshammari S, Laouini G. Heat Transfer Analysis of nanofluid flow in a rotating system with magnetic field using an intelligent strength stochastic-Driven Approach. Nanomaterials. 2022. https://doi.org/10.3390/nano12132273.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ali B, Mishra NK, Rafique K, Jubair S, Mahmood Z, Eldin SM. Mixed convective flow of hybrid nanofluid over a heated stretching disk with zero-mass flux using the modified Buongiorno model. Alex Eng J. 2023;72:89–96.

    Article  Google Scholar 

  16. Ganesh N, Al-Mdallal M, Kameswaran P. Numerical study of MHD effective Prandtl Number boundary layer flow of γAl2O3 nanofluids past a melting surface. Case Stud Therm Eng. 2019. https://doi.org/10.1016/j.csite.2019.100413.

    Article  Google Scholar 

  17. Xu H, Khan S, Ghani U, Bu W, Zeb A. The influence of effective prandtl number model on the micropolar squeezing flow of nanofluids between parallel disks. Processes. 2022. https://doi.org/10.3390/pr100611264.

    Article  Google Scholar 

  18. Al-Zahrani AA, Adnan MI, Khaleeq RU, Mutasem ZBF, Tag-Eldin E. Analytical study of (Ag–Graphene)/blood hybrid nanofluid influenced by (platelets-cylindrical)nanoparticles and Joule heating via VIM. ACS Omega. 2023;8(22):19926–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tulu A. Analysis of magnetohydrodynamic micropolar nanofluid flow due to radially stretchable rotating disk employing spectral method. Adv Math Phys. 2023. https://doi.org/10.1155/2023/5283475.

    Article  Google Scholar 

  20. Arani A, Shahmohamadi P, Sheikhzadeh A, Mehrabian M. Convective Heat transfer from a heated rotating disk at arbitrary inclination angle in laminar flow. Int J Eng. 2013;26:865–74.

    Google Scholar 

  21. Alghamdi M. Significance of arrhenius activation energy and binary chemical reaction in mixed convection flow of nanofluid due to a rotating disk. Coatings. 2020. https://doi.org/10.3390/coatings10010086.

    Article  Google Scholar 

  22. Adnan. Heat transfer inspection in [(ZnO-MWCNTs)/water-EG(50:50)]hnf with thermal radiation ray and convective condition over a Riga surface. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2119300.

    Article  Google Scholar 

  23. Alharbi KAM, Galal AM. Novel magneto-radiative thermal featuring in SWCNT–MWCNT/C2H6O2–H2O under hydrogen bonding. Int J Modern Phys B. 2023. https://doi.org/10.1142/S0217979224500176.

    Article  Google Scholar 

  24. Mishra NK, Khalid AMA, Rahman KU, Eldin SM, Fwaz MZB. Investigation of improved heat transport featuring in dissipative ternary nanofluid over a stretched wavy cylinder under thermal slip. Case Stud Therm Eng. 2023. https://doi.org/10.1016/j.csite.2023.103130.

    Article  Google Scholar 

  25. He JH, Abd-Elazem NY. The carbon nanotube-embedded boundary layer theory for energy harvesting. Facta Univ-Ser Mech. 2022;20(2):211–35.

    Google Scholar 

  26. Kumar K, Chauhan PR, Kumar R, Bharj RS. Irreversibility analysis in Al2O3-water nanofluid flow with variable property. Facta Univ-Ser Mech. 2022;20(3):503–18.

    Google Scholar 

  27. Kou SJ, He CH, Men XC, He JH. Fractal boundary layer and and its basic properties. Fractals. 2022. https://doi.org/10.1142/S0218348X22501729.

    Article  Google Scholar 

  28. Soo S. Laminar flow over an enclosed rotating disk. J Fluids Eng. 2022;80(2):287–94.

    Google Scholar 

  29. Jain S, Bohra S. Radiation effects in flow through porous medium over a rotating disk with variable fluid properties. Adv Math Phys. 2006. https://doi.org/10.1155/2016/9671513.

    Article  Google Scholar 

  30. Hayat T, Qayyum S, Imtiaz M, Alsaedi A. Radiative flow due to stretchable rotating disk with variable thickness. Results in Physics. 2017;7:156–65.

    Article  Google Scholar 

  31. Khan I, Nasir T, Hayat T, Khan B, Alsaedi A. Binary chemical reaction with activation energy in rotating flow subject to nonlinear heat flux and heat source/sink. J Comput Des Eng. 2020;7(3):279–86.

    CAS  Google Scholar 

  32. Zin NAM, Khan I, Shafie S, Alshomrani S. Analysis of heat transfer for unsteady MHD free convection flow of Jeffery nanofluid saturated in a porpous medium. Results in Physics. 2017;7:288–309.

    Article  Google Scholar 

  33. Das SK, Choi SUS, Patel HE. Heat transfer in nanofluids-A Review. Heat Transfer Eng. 2007;27(10):3–19.

    Article  Google Scholar 

  34. Abdulkhaliq KAM, Adnan, Akgul A. Investigation of Williamson nanofluid in a convectively heated peristaltic channel and magnetic field via method of moments. AIP Adv. 2023. https://doi.org/10.1063/5.0141498.

    Article  Google Scholar 

  35. Saranya S, Mdallal QMA. Computational study on nanoparticle shape effects of Al2O3-silicon oil nanofluid flow over a radially stretching rotating disk. Case Stud Therm Eng. 2021. https://doi.org/10.1016/j.csite.2021.100943.

    Article  Google Scholar 

  36. Phor L, Kumar T, Kumar V. Al2O3-water nanofluids for heat transfer application. MRS Adv. 2019;4:1611–9.

    Article  CAS  Google Scholar 

  37. Adnan, Alharbi KAM, Bani-Fwaz MZ, Eldin SM, Yassen MF. Numerical heat performance of TiO2/Glycerin under nanoparticles aggregation and nonlinear radiative heat flux in dilating/squeezing channel. Case Stud Therm Eng. 2023. https://doi.org/10.1016/j.csite.2022.102568.

    Article  Google Scholar 

  38. Mahmood Z, Rafique K, Khan U, El-Rahman MA, Alharbi R. Analysis of mixed convective stagnation point flow of hybrid nanofluid over sheet with variable thermal conductivity and slip conditions: a model-based study. Int J Heat Fluid Flow. 2024. https://doi.org/10.1016/j.ijheatfluidflow.2024.109296.

    Article  Google Scholar 

  39. Fwaz MZB, Mahmood Z, EL-Zahhar AA, Khan I, Niazai S. Computational investigation of thermal process in radiated nanofluid modulation influenced by nanoparticles (Al2O3) and molecular (H2O) diameters. J Comput Des Eng. 2024. https://doi.org/10.1093/jcde/qwae011.

    Article  Google Scholar 

  40. Khan U, Zaib A, Bakar SA, Ishak A. Unsteady stagnation-point flow of a hybrid nanofluid over a spinning disk: analysis of dual solutions. Neural Comput Appl. 2022;34:8193–210.

    Article  Google Scholar 

  41. Saeed A, Gul T, Ali I, Kumam W, Kumam P. Numerical approximation of microorganisms hybrid nanofluid flow induced by a wavy fluctuating spinning disc. Coatings. 2021. https://doi.org/10.3390/coatings11091032.

    Article  Google Scholar 

  42. Taza G, Ali B, Alghamdi W, Nasir S, Saeed A, Mukhtar S, Jawad M. Mixed convection stagnation point flow of the blood based hybrid nanofluid around a rotating sphere. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-86868-x.

    Article  Google Scholar 

  43. Narayan SS, Saeed AM, Fatima N, Duais FSA, Alharbi KAM, Puneeth V, Gorji MR, Kheder NB, Abdelmohsen SAM. possibilities for the flow of water and blood through a graphene layer in a geometry analogous to human arterioles: an observational study. Appl Sci. 2023. https://doi.org/10.3390/app13032000.

    Article  Google Scholar 

  44. Baby R, Puneeth V, Narayan SS, Khan MI, Anwar MS, Bafakeeh OT, Oreijah M, Geudri K. The impact of slip mechanisms on the flow of hybrid nanofluid past a wedge subjected to thermal and solutal stratification. Int J Modern Phys B. 2023. https://doi.org/10.1142/S021797922350145X.

    Article  Google Scholar 

  45. Anwar MS, Hussain M, Hussain Z, Puneeth V, Irfan M. Clay-based cementitious nanofluid flow subjected to Newtonian heating. Int J Modern Phys B. 2023. https://doi.org/10.1142/S0217979223501400.

    Article  Google Scholar 

  46. Khan MR, Puneeth V, Alaoui MK, Almagrabi AO. Numerical simulation of unsteady MHD bio-convective flow of viscous nanofluid through a stretching surface. Case Stud Therm Eng. 2024. https://doi.org/10.1016/j.csite.2023.103830.

    Article  Google Scholar 

  47. Abdelsalam SI, Abbas W, Megahed AM, Said AAM. A comparative study on the rheological properties of upper convected Maxwell fluid along a permeable stretched sheet. Heliyon. 2023. https://doi.org/10.1016/j.heliyon.2023.e22740.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Raza R, Naz R, Murtaza S, Abdelsalam SI. Novel nanostructural features of heat and mass transfer of radiative Carreau nanoliquid above an extendable rotating disk. Int J Modern Phys B. 2024. https://doi.org/10.1142/S0217979224504071.

    Article  Google Scholar 

  49. Bhatti MM, Vafai K, Abdelsalam SI. The role of nanofluids in renewable energy engineering. Nanomaterials. 2023. https://doi.org/10.3390/nano13192671.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Abdelsalam SI, Zahera AZ. Biomimetic amelioration of zirconium nanoparticles on a rigid substrate over viscous slime—a physiological approach. Appl Math Mech. 2023;44(9):1563–76.

    Article  Google Scholar 

  51. Kumar RSV, Sarris IE, Sowmya G, Prasannakumara BC, Verma A. Artificial neural network modeling for predicting the transient thermal distribution in a stretching/shrinking longitudinal fin. ASME J Heat Mass Transf. 2023. https://doi.org/10.1115/1.4062215.

    Article  Google Scholar 

  52. Nadeem A, Sayed ME. Heat transport mechanism in glycerin-titania nanofluid over a permeable slanted surface by considering nanoparticles aggregation and Cattaneo Christov thermal flux. Sci Progr. 2023. https://doi.org/10.1177/003685042311800325.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Aziz A, Alsaedi A, Muhammad T, Hayat T. Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk. Results in Physics. 2018;8:785–92.

    Article  Google Scholar 

  54. Ashraf W, Khan I, Andualem M. Thermal transport investigation and shear drag at solid–liquid interface of modified permeable radiative-SRID subject to Darcy-Forchheimer fluid flow composed by γ-nanomaterial. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-07045-2.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Waqas A. Numerical thermal featuring in γAl2O3-C2H6O2 nanofluid under the influence of thermal radiation and convective heat condition by inducing novel effects of effective Prandtl number model (EPNM). Adv Mech Eng. 2022. https://doi.org/10.1177/16878132221106577.

    Article  Google Scholar 

  56. Adnan, Ashraf W. Heat transfer in tetra-nanofluid between converging/diverging channel under the influence of thermal radiations by using Galerkin finite element method. Waves Random Complex Media. 2023. https://doi.org/10.1080/17455030.2023.2171154.

    Article  Google Scholar 

  57. Mishra NK, Sohail MU, Bani-Fwaz MZ, Hassan AM. Thermal analysis of radiated (aluminum oxide)/water through a magnet based geometry subject to Cattaneo-Christov and Corcione’s Models. Case Stud Therm Eng. 2023. https://doi.org/10.1016/j.csite.2023.103390.

    Article  Google Scholar 

  58. Nidhish KM, Sarfraz G, Fwaz MZB, Eldin SM. Dynamics of Corcione nanoliquid on a convectively radiated surface using Al2O3 nanoparticles. J Therm Anal Calorimet. 2023. https://doi.org/10.1007/s10973-023-12448-y.

    Article  Google Scholar 

  59. Aich W, Almujibah H, Abdullaev SS, Bani-Fwaz MZ, Hassan AM. Thermal performance of radiated annular extended surface using advanced nanomaterials influenced by various physical controlling parameters for nucleate boiling case. Case Stud Therm Eng. 2023. https://doi.org/10.1016/j.csite.2023.103524.

    Article  Google Scholar 

  60. Walid A, Ghulfam S, Said NM, Bilal M, Elhag AFA, Hassan AM. Significance of radiated ternary nanofluid for thermal transport in stagnation point flow using thermal slip and dissipation function. Case Stud Therm Eng. 2023. https://doi.org/10.1016/j.csite.2023.103631.

    Article  Google Scholar 

  61. Bhatti MM, Sait SM, Ellahi R, Sheremet MA, Oztop H. Thermal analysis and entropy generation of magnetic Eyring-Powell nanofluid with viscous dissipation in a wavy asymmetric channel. Int J Numer Meth Heat Fluid Flow. 2022;33(5):1609–36.

    Article  Google Scholar 

  62. Waqas A. Joule heating and heat generation/absorption effects on the heat transfer mechanism in ternary nanofluid containing different shape factors in stretchable converging/diverging Channel. Waves in Random and Complex Media. 2023. https://doi.org/10.1080/17455030.2023.2198038.

    Article  Google Scholar 

  63. Rashidi MM, Mahariq I, Nazari MA, Accouche O, Bhatti MM. Comprehensive review on exergy analysis of shell and tube heat exchangers. J Therm Anal Calorim. 2022;147:12301–11.

    Article  CAS  Google Scholar 

  64. Adnan, Ashraf W. Thermal efficiency in hybrid (Al2O3-CuO/H2O) and ternary hybrid nanofluids (Al2O3-CuO-Cu/H2O) by considering the novel effects of imposed magnetic field and convective heat condition. Waves Random Complex Media. 2022. https://doi.org/10.1080/17455030.2022.2092233.

    Article  Google Scholar 

  65. Waqas A. Heat transfer mechanism in ternary nanofluid between parallel plates channel using modified Hamilton-Crossers model and thermal radiation effects. Geoenergy Sci Eng. 2023. https://doi.org/10.1016/j.geoen.2023.211732.

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the research unit at King Khalid University for funding this work through Project number 132/45 and the authors acknowledge the Center of Bee Research and its Products, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia for their valuable technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan.

Ethics declarations

Conflict of interest

There is no competing interest regarding the publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bani-Fwaz, M.Z., Adnan, Fayyaz, S. et al. Investigation of unsteady nanofluid over half infinite domain under the action of parametric effects and EPNM. J Therm Anal Calorim (2024). https://doi.org/10.1007/s10973-024-13121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10973-024-13121-8

Keywords

Navigation