Skip to main content
Log in

Surface modification of MXene nanosheets with P-N-containing agents for boosting flame retardancy of epoxy resin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

It is imperative to develop efficient flame retardants to solve the issues of high heat and smoke release for epoxy resin (EP) polymeric materials plagued over time. Hence, a phosphorus–nitrogen modified Ti3C2Tx MXene nanohybrids (MXene@MPA) were synthesized by in situ assembly melamine phytate macromolecules (MPA) to boost the fire hazards of EP composites. The introduction of MPA improved the dispersion of MXene in epoxy matrix, contributing to the improved thermal stability and flame-retardant properties for EP composites. With the addition of 2 mass% MXene@MPA, EP composites achieved the decreased maximum mass loss rate (MLRmax) by 41.8%, indicating the enhanced thermal properties. Also, the peak heat release rate (PHRR) and peak smoke production rate (PSPR) of EP-MXene@MPA composites were down by 27.9% and 43.6% compared to pure EP, respectively, accompanied by significantly increased char production. The synergistic effects between MPA and MXene contributed to the elevated fire safety of EP-MXene@MPA composites: the catalytic charring of transition metals and phosphorus-containing acid and the barrier effect of MXene nanosheets, as well as the quenching effects of phosphorus–oxygen free radicals and dilution of nitrogen-containing inert gases due to the decomposition of MPA. The multiple hybridization route provided a reference for the development of efficient MXene-based flame retardants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang W, et al. The influence of the phosphorus-based flame retardant on the flame retardancy of the epoxy resins. Polym Degrad Stab. 2014;109:209–17. https://doi.org/10.1016/j.polymdegradstab.2014.07.023.

    Article  CAS  Google Scholar 

  2. Huo S, et al. Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives. Progr Polym Sci. 2021;114:101366.

    Article  CAS  Google Scholar 

  3. Cheng J, et al. Benzimidazolyl-substituted cyclotriphosphazene derivative as latent flame-retardant curing agent for one-component epoxy resin system with excellent comprehensive performance. Compos B Eng. 2019;177:107440. https://doi.org/10.1016/j.compositesb.2019.107440.

    Article  CAS  Google Scholar 

  4. Yin L, et al. Flame-retardant activity of ternary integrated modified boron nitride nanosheets to epoxy resin. J Colloid Interface Sci. 2022;608:853–63. https://doi.org/10.1016/j.jcis.2021.10.056.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, et al. Transparent, flame retardant, mechanically strengthened and low dielectric EP composites enabled by a reactive bio-based P/N flame retardant. Polym Degrad Stab. 2022;204:110106. https://doi.org/10.1016/j.polymdegradstab.2022.110106.

    Article  CAS  Google Scholar 

  6. Lu J, et al. Designing advanced 0D–2D hierarchical structure for epoxy resin to accomplish exceeding thermal management and safety. Chem Eng J. 2022;427:132046. https://doi.org/10.1016/j.cej.2021.132046.

    Article  CAS  Google Scholar 

  7. Meng W, et al. Assembling MXene with bio-phytic acid: Improving the fire safety and comprehensive properties of epoxy resin. Polym Testing. 2022;110:107564. https://doi.org/10.1016/j.polymertesting.2022.107564.

    Article  CAS  Google Scholar 

  8. Zhang Z, et al. Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response. Chem Eng J. 2020;386:123894. https://doi.org/10.1016/j.cej.2019.123894.

    Article  CAS  Google Scholar 

  9. Zhou K, Gao R, Qian X. Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy. J Hazard Mater. 2017;338:343–55.

    Article  PubMed  Google Scholar 

  10. Feng T, et al. 0D–2D nanohybrids based on binary transitional metal oxide decorated boron nitride enabled epoxy resin efficient flame retardant coupled with enhanced thermal conductivity at ultra-low additions. Compos Commun. 2023;41:101649. https://doi.org/10.1016/j.coco.2023.101649.

    Article  Google Scholar 

  11. Xu W, et al. Nickel hydroxide and zinc hydroxystannate dual modified graphite carbon nitride for the flame retardancy and smoke suppression of epoxy resin. Polym Degrad Stab. 2020;182:109366. https://doi.org/10.1016/j.polymdegradstab.2020.109366.

    Article  CAS  Google Scholar 

  12. Gong K, et al. MXene as emerging nanofillers for high-performance polymer composites: a review. Compos Part B: Eng. 2021. https://doi.org/10.1016/j.compositesb.2021.108867.

    Article  Google Scholar 

  13. Gong K, et al. Novel exploration of the flame retardant potential of bimetallic MXene in epoxy composites. Compos B Eng. 2022;237:109862. https://doi.org/10.1016/j.compositesb.2022.109862.

    Article  CAS  Google Scholar 

  14. Wan M, et al. Interface assembly of flower-like Ni-MOF functional MXene towards the fire safety of thermoplastic polyurethanes. Compos A Appl Sci Manuf. 2022;163:107187. https://doi.org/10.1016/j.compositesa.2022.107187.

    Article  CAS  Google Scholar 

  15. Liu C, et al. Phosphorous-Nitrogen flame retardants engineering MXene towards highly fire safe thermoplastic polyurethane. Compos Commun. 2022;29:101055. https://doi.org/10.1016/j.coco.2021.101055.

    Article  Google Scholar 

  16. Huo S, et al. A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins. Compos B Eng. 2022;234:109701. https://doi.org/10.1016/j.compositesb.2022.109701.

    Article  CAS  Google Scholar 

  17. Luo J, et al. Killing three birds with one stone: a novel regulate strategy for improving the fire safety of thermoplastic polyurethane. Compos A Appl Sci Manuf. 2023;168:107491. https://doi.org/10.1016/j.compositesa.2023.107491.

    Article  CAS  Google Scholar 

  18. Cheng X, et al. Phytic acid as a bio-based phosphorus flame retardant for poly(lactic acid) nonwoven fabric. J Clean Prod. 2016;124:114–9. https://doi.org/10.1016/j.jclepro.2016.02.113.

    Article  CAS  Google Scholar 

  19. Shang S, et al. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology. J Colloid Interface Sci. 2019;553:364–71.

    Article  CAS  PubMed  Google Scholar 

  20. Ran S, et al. Synthesis of decorated graphene with P, N-containing compounds and its flame retardancy and smoke suppression effects on polylactic acid. Compos B Eng. 2019;170:41–50. https://doi.org/10.1016/j.compositesb.2019.04.037.

    Article  CAS  Google Scholar 

  21. Yan W, et al. Novel bio-derived phytic acid and melamine interlayered/surface dual modified layered double hydroxide by one-pot method and its highly efficient flame retardant performance for polypropylene. Appl Clay Sci. 2022;228:106620. https://doi.org/10.1016/j.clay.2022.106620.

    Article  CAS  Google Scholar 

  22. Yang W, et al. Self-assembled bio-derived microporous nanosheet from phytic acid as efficient intumescent flame retardant for polylactide. Polym Degrad Stab. 2021;191:109664. https://doi.org/10.1016/j.polymdegradstab.2021.109664.

    Article  CAS  Google Scholar 

  23. Zhou K, et al. Facile strategy to synthesize MXene@LDH nanohybrids for boosting the flame retardancy and smoke suppression properties of epoxy. Compos A Appl Sci Manuf. 2022;157:106912. https://doi.org/10.1016/j.compositesa.2022.106912.

    Article  CAS  Google Scholar 

  24. Zhan Y, et al. Flexible MXene/aramid nanofiber nanocomposite film with high thermal conductivity and flame retardancy. Eur Polymer J. 2023;186:111847. https://doi.org/10.1016/j.eurpolymj.2023.111847.

    Article  CAS  Google Scholar 

  25. Wang K, et al. Construction of modified MXene with “organic–inorganic” structure to enhance the interfacial and mechanical properties of UHMWPE fiber-reinforced epoxy composite. Chem Eng J. 2023;452:139156. https://doi.org/10.1016/j.cej.2022.139156.

    Article  CAS  Google Scholar 

  26. Peng H, et al. N-P-Zn-containing 2D supermolecular networks grown on MoS2 nanosheets for mechanical and flame-retardant reinforcements of polyacrylonitrile fiber. Chem Eng J. 2019;372:873–85. https://doi.org/10.1016/j.cej.2019.04.209.

    Article  CAS  Google Scholar 

  27. Li W, et al. Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets. J Hazard Mater. 2020;398:123001. https://doi.org/10.1016/j.jhazmat.2020.123001.

    Article  CAS  PubMed  Google Scholar 

  28. Shi Y, et al. Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem Eng J. 2020;399:125829. https://doi.org/10.1016/j.cej.2020.125829.

    Article  CAS  Google Scholar 

  29. Liu L, et al. Functionalizing MXene towards highly stretchable, ultratough, fatigue- and fire-resistant polymer nanocomposites. Chem Eng J. 2021;424:130338. https://doi.org/10.1016/j.cej.2021.130338.

    Article  CAS  Google Scholar 

  30. Ma Y, et al. Green construction of melamine phytate nanosheets for enhancing anti-corrosive performance of water-borne epoxy coatings. J Mater Sci. 2022;57(7):4820–33. https://doi.org/10.1007/s10853-022-06940-3.

    Article  CAS  Google Scholar 

  31. Guo F, et al. NiFe prussian blue analogue nanocages decorated magnesium hydroxide rod for enhancing fire safety and mechanical properties of epoxy resin. Compos B Eng. 2022;233:109650. https://doi.org/10.1016/j.compositesb.2022.109650.

    Article  CAS  Google Scholar 

  32. Yin L, et al. Novel design of MOFs-based hierarchical nanoarchitecture: towards reducing fire hazards of epoxy resin. Compos A Appl Sci Manuf. 2022;158:106957. https://doi.org/10.1016/j.compositesa.2022.106957.

    Article  CAS  Google Scholar 

  33. Gong K, et al. Construction of interface-engineered two-dimensional nanohybrids towards superb fire resistance of epoxy composites. Compos A Appl Sci Manuf. 2022;152:106707. https://doi.org/10.1016/j.compositesa.2021.106707.

    Article  CAS  Google Scholar 

  34. Han G, et al. Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting. Chem Eng J. 2022;437:135482. https://doi.org/10.1016/j.cej.2022.135482.

    Article  CAS  Google Scholar 

  35. Gong K, et al. Organic-inorganic hybrid engineering MXene derivatives for fire resistant epoxy resins with superior smoke suppression. Compos A Appl Sci Manuf. 2022;161:107109. https://doi.org/10.1016/j.compositesa.2022.107109.

    Article  CAS  Google Scholar 

  36. Gong K, et al. Dual char-forming strategy driven MXene-based fire-proofing epoxy resin coupled with good toughness. J Colloid Interface Sci. 2023;640:434–44. https://doi.org/10.1016/j.jcis.2023.02.134.

    Article  CAS  PubMed  Google Scholar 

  37. Decsov K, et al. Microfibrous cyclodextrin boosts flame retardancy of poly(lactic acid). Polym Degrad Stab. 2021;191:109655. https://doi.org/10.1016/j.polymdegradstab.2021.109655.

    Article  CAS  Google Scholar 

  38. Shi C, et al. Co-MOF@MXene hybrids flame retardants for enhancing the fire safety of thermoplastic polyurethanes. Polym Degrad Stab. 2022;204:110119. https://doi.org/10.1016/j.polymdegradstab.2022.110119.

    Article  CAS  Google Scholar 

  39. Kong Q, et al. Influence of multiply modified FeCu-montmorillonite on fire safety and mechanical performances of epoxy resin nanocomposites. Thermochim Acta. 2022;707:179112. https://doi.org/10.1016/j.tca.2021.179112.

    Article  CAS  Google Scholar 

  40. Wang Y, et al. Fabrication of anti-dripping and flame-retardant polylactide modified with chitosan derivative/aluminum hypophosphite. Carbohyd Polym. 2022;298:120141. https://doi.org/10.1016/j.carbpol.2022.120141.

    Article  CAS  Google Scholar 

  41. Jiang H, et al. Construction of polyphosphazene-functionalized Ti3C2TX with high efficient flame retardancy for epoxy and its synergetic mechanisms. Chem Eng J. 2023;456:141049. https://doi.org/10.1016/j.cej.2022.141049.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22005277 and 52074247), Fundamental Research Founds for National University, China University of Geosciences (CUGDCJJ202203) and Young Top-notch Talent Cultivation Program of Hubei Province.

Author information

Authors and Affiliations

Authors

Contributions

QW was involved in data curation, investigation, methodology and roles/writing—original draft. JZ contributed to investigation, methodology and writing—review and editing. YC helped with project administration, supervision and writing—review and editing. ZX took part in investigation and methodology. YL was resposible for writing—review and editing. KZ carried out conceptualization, project administration, supervision and writing—review and editing.

Corresponding authors

Correspondence to Yulong Cheng or Keqing Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Zhang, J., Cheng, Y. et al. Surface modification of MXene nanosheets with P-N-containing agents for boosting flame retardancy of epoxy resin. J Therm Anal Calorim 149, 3141–3153 (2024). https://doi.org/10.1007/s10973-024-12938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-024-12938-7

Keywords

Navigation