Skip to main content
Log in

Thermal cure kinetics of highly branched polyurea resins at different molar ratios

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Highly branched polyurea (HBPU) resins have been developed as wood adhesives even though their cure kinetics was not well understood. Here, we report thermal cure kinetics of HBPU resins at three molar ratios (2.0, 2.5, and 3.0), using differential scanning calorimetry. A main endothermic peak at 200–240 °C of HBPU resins was used to calculate their thermal cure kinetics with several model-free kinetics methods such as Friedman (FR), Flynn–Wall–Ozawa (FWO), and Kissinger–Akahira–Sunose (KAS) method. Furthermore, Málek method was also used to predict an optimal reaction model. Thermal curing of HBPU resins changed from chemical-controlled reaction at low molar ratio to diffusion controlled one at high molar ratio, as the molar ratio of HBPU resins increased. FWO method was suitable for calculating the activation energy of 2.0 HBPU resins, while FR method was suitable for 2.5 and 3.0 HBPU resins. Furthermore, Málek method revealed that all of HBPU resins apparently followed autocatalytic reaction model, regardless of molar ratios. In addition, FWO and KAS method was appropriate to predict the reaction model of 2.0 and 3.0 HBPU resins with Málek method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pizzi A, Mittal KL. Handbook of Adhesive Technology. 2nd ed., A. Pizzi and K.L. Mittal, 2003, Marcel Dekker, Inc., New York

  2. Jiang S, Wang S, Du G, Hu M, Qian Z, Shi Z, et al. Highly branched polyurea-based resins: clean synthesis and wood bonding performance. ACS Sustain Chem Eng Am Chem Soc (ACS). 2022;10:7205–14. https://doi.org/10.1021/acssuschemeng.2c01916.

    Article  CAS  Google Scholar 

  3. Park S, Park B-D. Crystallinity of low molar ratio urea-formaldehyde resins modified with cellulose nanomaterials. J Korean Wood Sci Technol. 2021;49:0–2. https://doi.org/10.5658/WOOD.2021.49.2.169.

    Article  Google Scholar 

  4. Park S, Park B-D. Sustainable bio-based dialdehyde cellulose for transforming crystalline urea–formaldehyde resins into amorphous ones to improve their performance. J Ind Eng Chem. 2022. https://doi.org/10.1016/j.jiec.2022.05.012.

    Article  Google Scholar 

  5. Dunky M. Urea–formaldehyde (UF) adhesive resins for wood. Int J Adhes Adhes. 1998;18:95–107. https://doi.org/10.1016/S0143-7496(97)00054-7.

    Article  CAS  Google Scholar 

  6. Myers GE. Mechanisms of formaldehyde release from bonded wood products. ACS Symp Ser. 1986. https://doi.org/10.1021/bk-1986-0316.ch008.

    Article  Google Scholar 

  7. Park BD, Jeong HW. Hydrolytic stability and crystallinity of cured ureaformaldehyde resin adhesives with different formaldehyde/urea mole ratios. Int J Adhes Adhes. 2011;31:524–9. https://doi.org/10.1016/j.ijadhadh.2011.05.001.

    Article  CAS  Google Scholar 

  8. Park S, Jeong B, Park BD. A comparison of adhesion behavior of urea-formaldehyde resins with melamine-urea-formaldehyde resins in bonding wood. Forest. 2021;12(8):1037. https://doi.org/10.3390/f12081037.

    Article  Google Scholar 

  9. Wibowo ES, Park B, Causin V. Recent advances in urea–formaldehyde resins: converting crystalline thermosetting polymers back to amorphous ones. Polym Rev. 2021. https://doi.org/10.1080/15583724.2021.2014520.

    Article  Google Scholar 

  10. Wibowo ES, Park BD, Causin V. Hydrogen-bond-induced crystallization in low-molar-ratio urea-formaldehyde resins during synthesis. Ind Eng Chem Res. 2020;59:13095–104. https://doi.org/10.1021/acs.iecr.0c02268.

    Article  CAS  Google Scholar 

  11. Wang H, Cao M, Li TH, Yang L, Duan ZG, Zhou XJ, Du GB. Characterization of the low molar ratio urea-formaldehyde resin with C-13 NMR and ESI-MS: negative effects of the post-added urea on the urea-formaldehyde polymers. Polymers (Basel). 2018;10:602. https://doi.org/10.3390/polym10060602.

    Article  CAS  PubMed  Google Scholar 

  12. Wibiwo ES, Park BD. Enhancing adhesion of thermosetting urea-formaldehyde resins by preventing the formation of H-bonds with multi-reactive melamine. J Adhes. 2020. https://doi.org/10.1080/00218464.2020.1830069.

    Article  Google Scholar 

  13. Wibowo ES, Lubis MAR, Park B-D, Kim JS, Causin V. Converting crystalline thermosetting urea–formaldehyde resins to amorphous polymer using modified nanoclay. J Ind Eng Chem. 2020;87:78–89. https://doi.org/10.1016/j.jiec.2020.03.014.

    Article  CAS  Google Scholar 

  14. Paiva NT, Henriques A, Cruz P, Ferra JM, Carvalho LH, Magalhães FD. Production of melamine fortified urea-formaldehyde resins with low formaldehyde emission. J Appl Polym Sci. 2012;124:2311–7. https://doi.org/10.1002/app.35282.

    Article  CAS  Google Scholar 

  15. Yang H, Du G, Li Z, Ran X, Zhou X, Li T, et al. Superstrong adhesive of isocyanate-free polyurea with a branched structure. ACS Appl Polym Mater. 2021;3:1638–51. https://doi.org/10.1021/acsapm.1c00056.

    Article  CAS  Google Scholar 

  16. Li T, Zhang B, Jiang S, Zhou X, Du G, Wu Z, et al. Novel highly branched polymer wood adhesive resin. ACS Sustain Chem Eng. 2020;8:5209–16. https://doi.org/10.1021/acssuschemeng.9b07732.

    Article  CAS  Google Scholar 

  17. Voit BI, Lederer A. Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem Rev. 2009;109:5924–73. https://doi.org/10.1021/cr900068q.

    Article  CAS  PubMed  Google Scholar 

  18. Mu B, Liu T, Tian W. Long-chain hyperbranched polymers: synthesis, properties, and applications. Macromol Rapid Commun. 2019;40:1800471. https://doi.org/10.1002/marc.201800471.

    Article  CAS  Google Scholar 

  19. Xu Z, Liang Y, Ma X, Chen S, Yu C, Wang Y, et al. Recyclable thermoset hyperbranched polymers containing reversible hexahydro-s-triazine. Nat Sustain. 2020;3:29–34. https://doi.org/10.1038/s41893-019-0444-6.

    Article  Google Scholar 

  20. Jiang S, Hu M, Du G, Duan Z, Zhou X, Li T. Highly branched polyurea-enhanced urea-formaldehyde resin. ACS Appl Polym Mater. 2021;3:1157–70. https://doi.org/10.1021/acsapm.0c01362.

    Article  CAS  Google Scholar 

  21. Lv JY, Meng Y, He LF, Li XY, Wang HQ. Synthesis of a hyperbranched polyether epoxy through onestep proton transfer polymerization and its application as a toughener for epoxy resin dgeba. Chinese J Polym Sci. 2012;30:493–502. https://doi.org/10.1007/s10118-012-1166-7.

    Article  CAS  Google Scholar 

  22. Zhao L, Hu X. Autocatalytic curing kinetics of thermosetting polymers: a new model based on temperature dependent reaction orders. Polymer (Guildf). 2010;51:3814–20. https://doi.org/10.1016/j.polymer.2010.05.056.

    Article  CAS  Google Scholar 

  23. Zheng T, Wang X, Lu C, Zhang X, Ji Y, Bai C, et al. Studies on curing kinetics and tensile properties of silica-filled phenolic amine/epoxy resin nanocomposite. Polymers (Basel). 2019;11:680. https://doi.org/10.3390/polym11040680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomas R, Durix S, Sinturel C, Omonov T, Goossens S, Groeninckx G, et al. Cure kinetics, morphology and miscibility of modified DGEBA-based epoxy resin—effects of a liquid rubber inclusion. Polymer (Guildf). 2007;48:1695–710. https://doi.org/10.1016/j.polymer.2007.01.018.

    Article  CAS  Google Scholar 

  25. Kandelbauer A, Wuzella G, Mahendran A, Taudes I, Widsten P. Model-free kinetic analysis of melamine-formaldehyde resin cure. Chem Eng J. 2009;152:556–65. https://doi.org/10.1016/j.cej.2009.05.027.

    Article  CAS  Google Scholar 

  26. Wibowo ES, Park BD. Cure kinetics of low-molar-ratio urea-formaldehyde resins reinforced with modified nanoclay using different kinetic analysis methods. Thermochim Acta. 2020;686:178552. https://doi.org/10.1016/j.tca.2020.178552.

    Article  CAS  Google Scholar 

  27. Hatakeyama T, Quinn FX. Thermal analysis: fundamentals and applications to polymer science. Chichester: Wiley; 1994.

    Google Scholar 

  28. Thomas LC. Use of multiple heating rate DSC and modulated temperature DSC to detect and analyze temperature-time-dependent transitions in materials. Am Lab. 2001;33(1):262830–1.

    Google Scholar 

  29. Pal AK, Katiyar V. Theoretical and analyzed data related to thermal degradation kinetics of poly (L-lactic acid)/chitosan-grafted-oligo L-lactic acid (PLA/CH-g-OLLA) bionanocomposite films. Data Br. 2017;10:304–11. https://doi.org/10.1016/j.dib.2016.11.100.

    Article  Google Scholar 

  30. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68. https://doi.org/10.1016/S0040-6031(99)00253-1.

    Article  Google Scholar 

  31. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6. https://doi.org/10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  32. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 2007;6:183–95. https://doi.org/10.1002/polc.5070060121.

    Article  Google Scholar 

  33. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand Sect A: Phys Chem. 1966;70A:487.

    Article  Google Scholar 

  34. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6. https://doi.org/10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  35. Akahira T, Sunose T. Joint convention of four electrical institutes. Sci Educ Technol. 1971;16:22–31. https://doi.org/10.1021/i200014a015.

    Article  Google Scholar 

  36. Vyazovkin S. Modification of the Integral Isoconversional Method to Account for Variation in the Activation Energy. J Comput Chem. 2001;22:178–83. https://doi.org/10.1002/1096-987X(20010130)22:2%3c178::AID-JCC5%3e3.0.CO;2-%23.

    Article  CAS  Google Scholar 

  37. Golikeri SV, Luss D. Analysis of activation energy of grouped parallel reactions. AIChE J. 1972;18:277–82. https://doi.org/10.1002/aic.690180205.

    Article  CAS  Google Scholar 

  38. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  39. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42. https://doi.org/10.1002/app.1962.070062406.

    Article  CAS  Google Scholar 

  40. Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  41. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7. https://doi.org/10.1007/BF01903696.

    Article  Google Scholar 

  42. Redemann CE, Riesenfeld FC, La Viola FS. Formation of biuret from urea. Ind Eng Chem. 1958;50:633–6. https://doi.org/10.1021/ie50580a035.

    Article  CAS  Google Scholar 

  43. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006;27:1515–32. https://doi.org/10.1002/marc.200600404.

    Article  CAS  Google Scholar 

  44. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Limitations of model-fitting methods for kinetic analysis: polystyrene thermal degradation. Resour Conserv Recycl. 2013;74:75–81. https://doi.org/10.1016/j.resconrec.2013.02.014.

    Article  Google Scholar 

  45. Vyazovkin S, Sbirrazzuoli N. Effect of viscosity on the kinetics of initial cure stages. Macromol Chem Phys. 2000;201(2):199–203. https://doi.org/10.1002/(SICI)1521-3935(20000201)201:2%3c199::AID-MACP199%3e3.0.CO;2-N.

    Article  CAS  Google Scholar 

  46. Vyazovkin S, Mititelu A, Sbirrazzuoli N. Kinetics of epoxy-amine curing accompanied by the formation of liquid crystalline structure. Macromol Rapid Commun. 2003;24:1060–5. https://doi.org/10.1002/marc.200300023.

    Article  CAS  Google Scholar 

  47. Khanna C, Chanda M. Kinetics of anhydride curing of lsophthalic diglycidyl ester using differential scanning calorimetry. J Appl Polym Sci. 1993;49(2):319–29. https://doi.org/10.1002/app.1993.070490212.

    Article  CAS  Google Scholar 

  48. Gao W, Cao J-Z, Li J-Z. Effect of ammonium pentaborate on curing of aqueous phenol formaldehyde resin. Polym J. 2010;19(4):255–64.

    CAS  Google Scholar 

  49. Lubis MAR, Park BD. Influence of initial molar ratios on the performance of low molar ratio urea-formaldehyde resin adhesives. J Korean Wood Sci Technol. 2020;48:136–53. https://doi.org/10.5658/WOOD.2020.48.2.136.

    Article  Google Scholar 

  50. Shojaei B, Najafi M, Yazdanbakhsh A, Abtahi M, Zhang C. A review on the applications of polyurea in the construction industry. Polym Adv Technol. 2021;32:2797–812. https://doi.org/10.1002/pat.5277.

    Article  CAS  Google Scholar 

  51. Málek J, Mitsuhashi T, Criado JM. Kinetic analysis of solid-state processes. J Mater Res. 2001;16:1862–71.

    Article  Google Scholar 

  52. Lascano D, Quiles-Carrillo L, Balart R, Boronat T, Montanes N. Kinetic analysis of the curing of a partially biobased epoxy resin using dynamic differential scanning calorimetry. Polymers (Basel). 2019;11(3):391. https://doi.org/10.3390/polym11030391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by 2021 Kyungpook National University BK21 FOUR Graduate Innovation Project (International Joint Research Project for Graduate Students). This work was also financially supported by the Program for Leading Talents (no. 2017HA013), the 111 Project (D21027) and the Yunnan Provincial Academician Workstation (YSZJGZZ-2020052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byung-Dae Park or Guanben Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 509 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Yang, L., Park, BD. et al. Thermal cure kinetics of highly branched polyurea resins at different molar ratios. J Therm Anal Calorim 148, 6389–6405 (2023). https://doi.org/10.1007/s10973-023-12160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12160-x

Keywords

Navigation