Skip to main content
Log in

Optimal configuration of discrete heat sources in a channel with sudden expansion and contraction by lattice Boltzmann method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This research focuses on the flow and heat transfer characteristics past three hot obstacles in a sudden expansion and contraction channel. To enhance the heat transfer, the MWCNT-Fe3O4 Water hybrid nanofluid is used. The effect of Reynolds number (40, 70 and 100), nanoparticle volume fraction of MWCNT-Fe3O4/water hybrid nanofluid (0.00, 0.001, and 0.003) and different arrangements of discrete heat sources (47 arrangements) on the flow pattern, temperature distribution and heat transfer characteristics have been investigated. The lattice Boltzmann method (LBM) is applied for the simulations. It is found that the heat transport performance of each heated obstacle is not only related to its position and the arrangements of the other two heat sources are important. Compared with the other arrangements, when three obstacles are located on the first row, all three hot sources can obtain relatively better heat transfer performances, and the corresponding Nuave is 5.1451 which is 1.72 times the minimum value of Nuave (Case 4). The obstacle located behind another obstacle would obtain low Nuavg. Besides, to achieve the highest heat transfer performance of one heat obstacle in a column, the position OBS#4 in Case 14 needs to be placed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

H :

Height of the channel

ei:

Discrete lattice velocity in direction

f :

Density distribution function

feq:

Equilibrium density distribution function

Nu:

Nusselt number

U, V:

Non-dimensional velocity components

Pr:

Prandtl number

L:

Width of the channel

cs:

Sound speed in Lattice scale

g :

Energy distribution function

geq:

Equilibrium energy distribution function

T :

Fluid temperature

k :

Thermal conductivity

Re:

Reynolds number

ωi:

Mass function in i direction

ϕ :

Volume fraction

τc:

Relaxation time for temperature

α :

Thermal diffusivity

ρ :

Density

τv:

Relaxation time for fluid flow

β :

Thermal expansion coefficient

μ :

Dynamic viscosity

p :

Solid particles

nf:

Nanofluid

c :

Cold

f :

Fluid

h :

Hot

i :

Moving direction of single-particle

References

  1. Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem Eng. 2017;72:70–84.

    Article  CAS  Google Scholar 

  2. Dehghan M, Vajedi H, Daneshipour M, Pourrajabian A, Rahgozar S, Ilis GG. Pumping power and heat transfer rate of converging microchannel heat sinks: errors associated with the temperature dependency of nanofluids. J Therm Anal Calorim. 2020;140(3):1267–75.

    Article  CAS  Google Scholar 

  3. Mohebbi R, Lakzayi H, Sidik NAC, Japar WMAA. Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks. Int J Heat Mass Transf. 2018;117:425–35.

    Article  CAS  Google Scholar 

  4. Mohebbi R, Rashidi MM, Izadi M, Sidik NAC, Xian HW. Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int J Heat Mass Transf. 2018;117:1291–303.

    Article  CAS  Google Scholar 

  5. Mohebbi R, Haghighi Khalilabad S, Ma Y. Effect of γ-Al2O3/water nanofluid on natural convection heat transfer of corrugated ⅂ shaped cavity: study the different aspect ratio of grooves. J Appl Fluid Mech. 2019;12(4):1151–60.

    Article  Google Scholar 

  6. Ma Y, Mohebbi R, Rashidi MM, Yang Z. MHD convective heat transfer of Ag-MgO/water hybrid nanofluid in a channel with active heaters and coolers. Int J Heat Mass Transf. 2019;137:714–26.

    Article  CAS  Google Scholar 

  7. Mohebbi R, Izadi M, Amiri Delouei A, Sajjadi H. Effect of MWCNT-Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorim. 2019;135(6):3029–42.

    Article  CAS  Google Scholar 

  8. Liu Y, Phan-Thien N. An optimum spacing program for three chips mounted on a vertical substrate in an enclosure. Heat Transf Part A. 2000;37:613–30.

    Article  CAS  Google Scholar 

  9. Queipo N, Devarakonda R, Humphery ACJ. Genetic algorithms for thermosciences research: application to the optimized cooling of electronic components. Int J Heat Mass Transf. 1994;37:893–908.

    Article  Google Scholar 

  10. Chen S, Liu Y. An optimum spacing problem for three-by-three heated elements mounted on a substrate. Heat Mass Transf. 2002;29:3–9.

    Article  Google Scholar 

  11. da Silva AK, Lorente S, Bejan A. Optimal distribution of discrete heat sources on a plate with laminar forced convection. Int J Heat Mass Transf. 2004;47:2139–48.

    Article  Google Scholar 

  12. Dias T, Milanez LF. Optimal location of heat sources on a vertical wall with natural convection through genetic algorithms. Int J Heat Mass Transf. 2006;49:2090–6.

    Article  Google Scholar 

  13. Sudhakar TVV, Balaji C, Venkateshan SP. Optimal configuration of discrete heat sources in a vertical duct under conjugate mixed convection using artificial neural networks. Int J Therm Sci. 2009;48:881–90.

    Article  CAS  Google Scholar 

  14. Rahimi A, Sepehr M, Janghorban Lariche M, Mesbah M, Kasaeipoor A, Hasani Malekshah E. Analysis of natural convection in nanofluid-filled H-shaped cavity by entropy generation and heatline visualization using lattice Boltzmann method. Phys E. 2018;97:347–62.

    Article  CAS  Google Scholar 

  15. Sarper B, Saglam M, Aydin O. Experimental and numerical investigation of natural convection in a discretely heated vertical channel: Effect of the blockage ratio of the heat sources. Int J Heat Mass Transf. 2018;126:894–910.

    Article  Google Scholar 

  16. Selimefendigil F, Öztop HF. Effects of local curvature and magnetic field on forced convection in a layered partly porous channel with area expansion. Int J Mech Sci. 2020;179:10569.

    Article  Google Scholar 

  17. Hajji H, Kolsi L, Ghachem K, Maatki C, Hussein AK, Borjini MN. Numerical study of heat transfer and flow structure over a microscale backstep. Alex Eng J. 2021;60(3):2759–68.

    Article  Google Scholar 

  18. Agrawal A, Djenidi L, Antonia RA. Simulation of gas flow in microchannels with a sudden expansion or contraction. J Fluid Mech. 2005;530:135–44.

    Article  Google Scholar 

  19. Nouri D, Pasandideh-Fard M, Oboodi MJ, Mahian O, Sahin AZ. Entropy generation analysis of nanofluid flow over a spherical heat source inside a channel with sudden expansion and contraction. Int J Heat Mass Transf. 2018;1(116):1036–43.

    Article  Google Scholar 

  20. Sebdani SM, Mahmoodi M, Hashemi SM. Effect of nanofluid variable properties on mixed convection in a square cavity. Int J Therm Sci. 2012;52:112–26.

    Article  CAS  Google Scholar 

  21. Frisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett. 1986;56(14):1505.

    Article  CAS  PubMed  Google Scholar 

  22. Frisch U. Relation between the lattice Boltzmann equation and the Navier-Stokes equations. Phys D. 1991;47(1–2):231–2.

    Article  Google Scholar 

  23. McNamara GR, Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett. 1988;61(20):2332.

    Article  CAS  PubMed  Google Scholar 

  24. Higuera FJ. Boltzmann approach to lattice gas simulations. EPL. 1989;9(7):663.

    Article  Google Scholar 

  25. Chen H, Chen S, Matthaeus WH. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys Rev A. 1992;45(8):R5339.

    Article  CAS  PubMed  Google Scholar 

  26. Narendran G, Perumal DA, Gnanasekeran N. A review of lattice boltzmann method computational domains for micro-and nanoregime applications. Nanosci Technol Int J. 2020;11(4).

  27. Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids. 1997;9:1591–8.

    Article  CAS  Google Scholar 

  28. Mohamad AA. Lattice boltzmann method. New York: Springer; 2011.

    Book  Google Scholar 

  29. Mohebbi R, Rashidi MM, Izadi M, Sidik NAC, Xian HW. Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int J Heat Mass Transf. 2018;117:1291–303.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Financial Support of the Research Council of Damghan University with the Grant number 98/eng/134/327 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasul Mohebbi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbi, R., Ma, Y. Optimal configuration of discrete heat sources in a channel with sudden expansion and contraction by lattice Boltzmann method. J Therm Anal Calorim 148, 4553–4566 (2023). https://doi.org/10.1007/s10973-023-12020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12020-8

Keywords

Navigation