Skip to main content
Log in

Glass–ceramic sealant with different alkali contents made from natural and waste materials for SOFC

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, three different mixtures including natural volcanic rock basalt, waste window glass, and Na2CO3 were developed as sealants for using solid oxide fuel cell (SOFC). The mixtures were melted at 1500 °C and cast into the water and graphite mold. The bulk glass parts were used in dilatometer analysis to determine the coefficient of thermal expansion. Glass cast into the water were milled and sized − 53 μm and, after certain pretreatments, coated on Crofer, AISI 409 and 439 stainless steel by dip-coating method. After the coating, heat treatment was performed at 850, 900, and 950 °C in order to ensure permanent bonding and sealing between glass–ceramic sealing and steel substrate. As a result of the heat treatment, the transformation from a glassy structure to a glass–ceramic structure occurred. The interface between glass–ceramic sealing and steel substrate, bonding, and sealing properties were examined by scanning electron microscopy and X-ray diffraction analysis to determine its suitability for SOFC. Furthermore, the activation energies for the precipitation of crystalline phases have been evaluated, and the crystallization mechanisms have been studied by DTA results. The crystallization kinetics was described in terms of the nucleation growth Johnson–Mehl–Avrami model. The results showed that surface crystallization became more effective instead of volume crystallization with increasing Na content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Veluswamy GK, Laycock CJ, Shah K, Ball AS, Guwy AJ, Dinsdale RM. Biohythane as an energy feedstock for solid oxide fuel cells. Int J Hydrog Energy. 2019. https://doi.org/10.1016/j.ijhydene.2019.08.256.

    Article  Google Scholar 

  2. Bouraiou A, Necaibia A, Boutasseta N, Mekhilef S, Dabou R, Ziane A, Sahouane N, Attoui I, Mostefaoui M, Touaba O. Status of renewable energy potential and utilization in Algeria. J Clean Prod. 2020. https://doi.org/10.1016/j.jclepro.2019.119011.

    Article  Google Scholar 

  3. Longo S, Cellura M, Guarino F, Brunaccini G, Ferraro M. Life cycle energy and environmental impacts of a solid oxide fuel cell micro-CHP system for residential application. Sci Total Environ. 2019. https://doi.org/10.1016/j.scitotenv.2019.05.368.

    Article  PubMed  Google Scholar 

  4. Lian J, Zhang Y, Ma C, Yang Y, Chaima E. A review on recent sizing methodologies of hybrid renewable energy systems. Energy Convers Manag. 2019. https://doi.org/10.1016/j.enconman.2019.112027.

    Article  Google Scholar 

  5. Ayawanna J, Kingnoi N, Laorodphan N. Effect of bismuth oxide on crystallization and sealing behavior of barium borosilicate glass sealant for SOFCs. J Non-Crystal Solids. 2019. https://doi.org/10.1016/j.jnoncrysol.2019.01.028.

    Article  Google Scholar 

  6. Mejía Gómez AE, Lamas DG, Leyva AG, Sacanell J. Nanostructured La0.5Ba0.5CoO3 as cathode for solid oxide fuel cells. Ceram Int. 2019. https://doi.org/10.1016/j.ceramint.2019.04.122.

    Article  Google Scholar 

  7. Timurkutluk B, Celik S, Ucar E. Effects of solid loading on joining and thermal cycling performance of glass-ceramic sealing pastes for solid oxide fuel cells. Ceram Int. 2019. https://doi.org/10.1016/j.ceramint.2019.03.207.

    Article  Google Scholar 

  8. Yilmaz S, Ates A, Ercenk E. Crystallization kinetics of basalt-based glass-ceramics for solid oxide fuel cell application. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7414-5.

    Article  Google Scholar 

  9. Ercenk E, Cicekli AE, Yilmaz S. The glass-ceramic sealant materials obtained from basalt for SOFC. J Ceram Pro Res. 2016. https://hdl.handle.net/20.500.12619/69847.

  10. Salman SM, Salama SN, Abo-Mosallam HA. Contribution of some divalent oxides replacing Li2O to crystallization characteristics and properties of magnetic glass–ceramics based on Li2O–Fe2O3–Al2O3–SiO2. Ceram Int. 2016. https://doi.org/10.1016/j.ceramint.2016.02.097.

    Article  Google Scholar 

  11. Zhao L, Wei W, Bai H, Zhang X, Cang D. Synthesis of steel slag ceramics: chemical composition and crystalline phases of raw materials. Int J Miner Metall Mater. 2015. https://doi.org/10.1007/s12613-015-1077-z.

    Article  Google Scholar 

  12. Ghiara G, Piccardo P, Bongiorno V, Geipel C, Spotorno R. Characterization of metallic interconnects extracted from solid oxide fuel cell stacks operated up to 20,000 h in real life conditions: the air side. Energies. 2020. https://doi.org/10.3390/en13246487.

    Article  Google Scholar 

  13. Singhal SC, Kendall K. High temperature SOFC: fundamentals, design and applications. Oxford: Elsevier; 2003.

    Google Scholar 

  14. Wu J, Stebbins JF. Temperature and modifier cation field strength effect on aluminaborosilicate glass network structure. J Non-Crystal Solids. 2013. https://doi.org/10.1016/j.jnoncrysol.2012.11.005.

    Article  Google Scholar 

  15. Morin EI, Wu J, Stebbins JF. Modifier cation (Ba, Ca, La, Y) field strength effects on aluminum and boron coordination in aluminoborosilicate glasses: the role of fictive temperature and boron content. Appl Phys A. 2014. https://doi.org/10.1007/s00339-014-8369-4.

    Article  Google Scholar 

  16. Massera J, Hupa L, Hupa M. Influence of the partial substitution of CaO with MgO on the thermal properties and in vitro reactivity of the bioactive glass S53P4. J Non-Crystal Solids. 2012. https://doi.org/10.1016/j.jnoncrysol.2012.06.032.

    Article  Google Scholar 

  17. Zheng W, Cao H, Zhong J, Qian S, Peng Z, Shen C. CaO–MgO–Al2O3–SiO2 glass-ceramics from lithium porcelain clay tailings for new building materials. J Non-Crystal Solids. 2015. https://doi.org/10.1016/j.jnoncrysol.2014.11.002.

    Article  Google Scholar 

  18. Ji R, Zheng Y, Zou Z, Chen Z, Wei S, Jin X, Zhang M. Utilization of mineral wool waste and waste glass for synthesis of foam glass at low temperature. C Build Mat. 2019. https://doi.org/10.1016/j.conbuildmat.2019.04.226.

    Article  Google Scholar 

  19. NIIR Board of Consultants & Engineers. the complete book an glass-ceramic technology. India: Asia Pasific Business Press; 2017.

    Google Scholar 

  20. Onodera Y, Takimoto Y, Hijiya H, Taniguchi T, Urata S, Inaba S, Fujita S, Obayashi I, Hiraoka Y, Kohara S. Origin of the mixed alkali effect in silicate glass. NPG Asia Mater. 2019. https://doi.org/10.1038/s41427-019-0180-4.

    Article  Google Scholar 

  21. Ito S, Taniguchi T, Ono M, Uemura K. Network and void structure for glasses with a higher resistance to crack formation. J Non-Crystal Solids. 2012. https://doi.org/10.1016/j.jnoncrysol.2012.02.039.

    Article  Google Scholar 

  22. Mcmillan PW. Glass-ceramics. London: Academic Press; 1979.

    Google Scholar 

  23. Sidebottom DL. Connecting glass-forming fragility to network topology. Front Mater. 2019. https://doi.org/10.3389/fmats.2019.00144.

    Article  Google Scholar 

  24. Tan KH, Rahman HA, Taib H. Coating layer and influence of transition metal for ferritic stainless steel interconnector solid oxide fuel cell: A review. Int J Hydrog Energy. 2019. https://doi.org/10.1016/j.ijhydene.2019.06.155.

    Article  Google Scholar 

  25. Timurkutluk B, Toros S, Onbilgin S, Korkmaz HG. Determination of formability characteristics of Crofer 22 APU sheets as interconnector for solid oxide fuel cells. Int J Hydrog Energy. 2018. https://doi.org/10.1016/j.ijhydene.2018.04.243.

    Article  Google Scholar 

  26. Shermer HF. Thermal expansion of binary alkali silicate glasses. J Res Natl Bur Stand. 1956;57:97–101.

    Article  CAS  Google Scholar 

  27. Jurado-Egea JR, Owen AE, Bandyopadhyay AK. Electronic conduction in basalt glass and glass-ceramics - correlation with magnetite crystallization. J Mater Sci. 1987. https://doi.org/10.1007/BF01161466.

    Article  Google Scholar 

  28. da Silveira RA, Evaristo LL, Faita FL, Buchner S. Effect of high pressure and high temperature on the Na2O⋅2CaO⋅3SiO2 glass-ceramic’s structural properties. J Non-Crystal Solids. 2021. https://doi.org/10.1016/j.jnoncrysol.2021.121026.

    Article  Google Scholar 

  29. Luo Z, He F, Zhang W, Xiao Y, Xie J, Sun R, Xie M. Effects of fluoride content on structure and properties of steel slag glass-ceramics. Mat Chem Phy. 2020. https://doi.org/10.1016/j.matchemphys.2019.122531.

    Article  Google Scholar 

  30. Khater GA, Yue Y, Abu Safiah MO, Mahmoud MA. Synthesis and characterization of anorthite and magnetite glass-ceramics from basaltic rocks. SILICON. 2019. https://doi.org/10.1007/s12633-018-9991-0.

    Article  Google Scholar 

  31. Cao Y, Xu C, Tian Y, Hou Y. Effect of roasting temperature on phase transformation in co-reduction roasting of nickel slag. Metals. 2020. https://doi.org/10.3390/met10040550.

    Article  Google Scholar 

  32. Petric A, Ling H. Electrical conductivity and thermal expansion of spinels at elevated temperatures. J Am Ceram Soc. 2007. https://doi.org/10.1111/j.1551-2916.2007.01522.x.

    Article  Google Scholar 

  33. Hovis GL, Crelling J, Wattles D, Dreibelbis B, Dennison A, Keohane M, Brennan S. Thermal expansion of nepheline-kalsilite crystalline solutions. Miner Mag. 2003. https://doi.org/10.1180/0026461036730115.

    Article  Google Scholar 

  34. Mysen B, Richet P. Silicate glasses and melts. Amsterdam: Elsevier Book; 2019.

    Google Scholar 

  35. Wachtman JB. Mechanical and thermal properties of ceramics. In: Proceedings of a symposium held at Gaithersburg; 1968.

  36. Kazmina O, Tokareva AY, Vereshchagin VI. Using quartzofeldspathic waste to obtain foamed glass material. Resour Eff Technol. 2016. https://doi.org/10.1016/j.reffit.2016.05.001.

    Article  Google Scholar 

  37. Yang J, Lian J, Bai H, Cui W, Guo Z. Cr2O3 film formed by surface oxidation of stainless steel irradiated by a Ng-YAG pulsed laser. ISIJ Int. 2005. https://doi.org/10.2355/isijinternational.45.730.

    Article  Google Scholar 

  38. Shen YS, Liu J, Guo J, Zhao Y. Mechanisms involved in the roasting of pellets composed of stainless steel slag and sodium hydroxide to extract chromium. ISIJ Int. 2016. https://doi.org/10.2355/isijinternational.ISIJINT-2016-320.

    Article  Google Scholar 

  39. Mittal A, Albertsson GJ, Gupta GS, Seetharaman S, Subramanian S. Some thermodynamic aspects of the oxides of chromium. Metall Mater Trans B. 2014. https://doi.org/10.1007/s11663-014-0027-x.

    Article  Google Scholar 

  40. Liu D, Xue X, Yang H. The effect of chromium on the roasting process of vanadium extraction. Metals. 2016. https://doi.org/10.3390/met6070157.

    Article  Google Scholar 

  41. Li W, Yan X, Aberle AG, Venkataraj S. Effect of sodium diffusion on the properties of CIGS solar absorbers prepared using elemental Se in a two-step process. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-39283-2.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tiffany Chen HY, Tosoni S, Pacchioni G. A DFT study of the acid–base properties of anatase TiO2 and tetragonal ZrO2 by adsorption of CO and CO2 probe molecules. Surf Sci. 2016. https://doi.org/10.1016/j.susc.2016.02.008.

    Article  Google Scholar 

  43. Karamanov A, Pisciella P, Pelino M. The effect of Cr2O3 as a nucleating agent in iron-rich glass-ceramics. J Eur Ceram Soc. 1999. https://doi.org/10.1016/S0955-2219(99)00047-3.

    Article  Google Scholar 

  44. Ray CS, Huang W, Day DE. Crystallization kinetic of lithia-silica glasses: effect of composition and nucleation agent. J Am Ceram Soc. 1987. https://doi.org/10.1111/j.1151-2916.1987.tb05714.x.

    Article  Google Scholar 

  45. Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Crystal Sol. 1986. https://doi.org/10.1016/S0022-3093(86)80084-9.

    Article  Google Scholar 

  46. Francis AA. Crystallization kinetics of magnetic glass–ceramics prepared by the processing of waste materials. Mat Res Bull. 2006. https://doi.org/10.1016/j.materresbull.2005.11.002.

    Article  Google Scholar 

  47. Balaya P, Sunandana CS. Crystallization studies of 30Li2O:70TeO2 glass. J Non-Crystal Solids. 1993;162–3:253–62.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EE contributed to conceptualization; SY provided methodology; TY and SY performed formal analysis and investigation; EE and SY performed writing—original draft preparation; EE and SY performed writing—reviewing and editing; ASD and TY provided resources; ASD performed visualization; TY carried out data curation; and SY performed supervision.

Corresponding author

Correspondence to Ediz Ercenk.

Ethics declarations

Ethical approval

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ercenk, E., Yasar, T., Demirkiran, S. et al. Glass–ceramic sealant with different alkali contents made from natural and waste materials for SOFC. J Therm Anal Calorim 148, 4015–4031 (2023). https://doi.org/10.1007/s10973-023-12007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12007-5

Keywords

Navigation