Skip to main content
Log in

Evaluation of thermal properties and process hazard of 1-hexyl-3-methylimidazolium nitrate through thermodynamic calculations and equilibrium methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

With the continuous development of battery technology, there are new research investments in materials of various parts. In the field of electrolytes, ionic liquids (IL) are considered to be excellent electrolytes and have been widely studied in distinct energy fields. However, it is necessary to pay attention to the safety characteristics of ionic liquids at high temperature due to the application of energy. Still, there is little research on the reaction and kinetics of ionic liquids. To ensure the safety of ionic liquids, such as high temperature, the common ionic liquid 1-hexyl-3-methylimidazolium nitrate ([Hmim] NO3) was selected for analysis. The exothermic mode is obtained from the data of differential scanning calorimetry. The basic reaction parameters of [Hmim] NO3 were determined with thermodynamic equation simulation. For ionic liquids in the actual situation, consider adding a heat balance model to estimate its temperature change pattern and determine the hazard temperature and related safety parameters. Temperature changes were assessed by constructing 25.0 g and 50.0 g packages to simulate material reactions and heat transfer in the external environment. The results showed that [Hmim] NO3 had shorter TMRad and TCL (< 1 day) when the temperature was above 200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbas T, Gonfa G, Lethesh KC, Mutalib MIA, Mb A, Cheun KY, et al. Mercury capture from natural gas by carbon supported ionic liquids: Synthesis, evaluation and molecular mechanism. Fuel. 2016;177:296–303. https://doi.org/10.1016/j.fuel.2016.03.032.

    Article  CAS  Google Scholar 

  2. Cummings J, Shah K, Atkin R, Moghtaderi B. Physicochemical interactions of ionic liquids with coal; the viability of ionic liquids for pre-treatments in coal liquefaction. Fuel. 2015;143:244–52. https://doi.org/10.1016/j.fuel.2014.11.042.

    Article  CAS  Google Scholar 

  3. Meng J, Pan Y, Ran Z, Li Y, Jiang J, Wang Q, et al. Thermal hazard and decomposition kinetics of 1-butyl-2,3-dimethylimidazolium nitrate via TGA/DSC and FTIR. J Loss Prev Process Ind. 2021;72:104562. https://doi.org/10.1016/j.jlp.2021.104562.

    Article  CAS  Google Scholar 

  4. Tsai C-F, Wen IJ, Liu S-H, Cao C-R, Zhang H. Evaluation of thermal hazard characteristics of four low temperature reactive azo compounds under isothermal conditions. J Loss Prev Process Ind. 2021;71:104453. https://doi.org/10.1016/j.jlp.2021.104453.

    Article  CAS  Google Scholar 

  5. Liu K-H, Xiao Y, Zhang H, Pang P, Shu C-M. Inhibiting effects of carbonised and oxidised powders treated with ionic liquids on spontaneous combustion. Process Saf Environ Prot. 2022;157:237–45. https://doi.org/10.1016/j.psep.2021.11.023.

    Article  CAS  Google Scholar 

  6. Ibrahim MH, Hayyan M, Hashim MA, Hayyan A. The role of ionic liquids in desulfurization of fuels: a review. Renew Sustain Energy Rev. 2017;76:1534–49. https://doi.org/10.1016/j.rser.2016.11.194.

    Article  CAS  Google Scholar 

  7. Jayakumar M, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR. Electrochemical behavior of ruthenium (III), rhodium (III) and palladium (II) in 1-butyl-3-methylimidazolium chloride ionic liquid. Electrochim Acta. 2009;54(26):6747–55. https://doi.org/10.1016/j.electacta.2009.06.043.

    Article  CAS  Google Scholar 

  8. Maton C, De Vos N, Stevens CV. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev. 2013;42(13):5963–77. https://doi.org/10.1039/C3CS60071H.

    Article  CAS  PubMed  Google Scholar 

  9. Ogunlaja AS, Alade OS. Catalysed oxidation of quinoline in model fuel and the selective extraction of quinoline-N-oxide with imidazoline-based ionic liquids. Egypt J Pet. 2018;27(2):159–68. https://doi.org/10.1016/j.ejpe.2017.02.004.

    Article  Google Scholar 

  10. Xue L, Zhao FQ, Xing XL, Zhou ZM, Wang K, Gao HX, et al. Thermal behavior of 3,4,5-triamino-1,2,4-triazole nitrate. Thermochim Acta. 2010;511(1):174–8. https://doi.org/10.1016/j.tca.2010.08.011.

    Article  CAS  Google Scholar 

  11. Zhang X, Pan L, Wang L, Zou JJ. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids. Chem Eng Sci. 2018;180:95–125. https://doi.org/10.1016/j.ces.2017.11.044.

    Article  CAS  Google Scholar 

  12. Liang R, Yang M, Xuan X. Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide. Chin J Chem Eng. 2010;18(5):736–41. https://doi.org/10.1016/S1004-9541(09)60122-1.

    Article  CAS  Google Scholar 

  13. Strechan AA, Kabo AG, Paulechka YU, Blokhin AV, Kabo GJ, Shaplov AS, et al. Thermochemical properties of 1-butyl-3-methylimidazolium nitrate. Thermochim Acta. 2008;474(1):25–31. https://doi.org/10.1016/j.tca.2008.05.002.

    Article  CAS  Google Scholar 

  14. Liu SH, Zhang B. Using thermal analysis technology to assess the thermal stability of 1,3-dimethylimidazolium nitrate. Process Saf Environ Prot. 2019;124:181–6. https://doi.org/10.1016/j.psep.2019.02.012.

    Article  CAS  Google Scholar 

  15. Liu SH, Lin WC, Xia H, Hou HY, Shu CM. Combustion of 1-butylimidazolium nitrate via DSC, TG, VSP2, FTIR, and GC/MS: An approach for thermal hazard, property and prediction assessment. Process Saf Environ Prot. 2018;116:603–14. https://doi.org/10.1016/j.psep.2018.03.010.

    Article  CAS  Google Scholar 

  16. Kossoy AA, Akhmetshin YG. Simulation-based approach to design of inherently safer processes. Process Saf Environ Prot. 2012;90(5):349–56. https://doi.org/10.1016/j.psep.2012.03.007.

    Article  CAS  Google Scholar 

  17. Kossoy AA, Belokhvostov VM, Koludarova EY. Thermal decomposition of AIBN: part D: verification of simulation method for SADT determination based on AIBN benchmark. Thermochim Acta. 2015;621:36–43. https://doi.org/10.1016/j.tca.2015.06.008.

    Article  CAS  Google Scholar 

  18. Burnham AK. Computational aspects of kinetic analysis: Part D: the ICTAC kinetics project—multi thermal history model fitting methods and their relation to isoconversional methods. Thermochim Acta. 2000;355(1):165–70. https://doi.org/10.1016/S0040-6031(00)00446-9.

    Article  CAS  Google Scholar 

  19. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355(1):125–43. https://doi.org/10.1016/S0040-6031(00)00443-3.

    Article  CAS  Google Scholar 

  20. Dai X, Shi L, An Q, Qian W. Chemical kinetics method for evaluating the thermal stability of Organic Rankine Cycle working fluids. Appl Therm Eng. 2016;100:708–13.

    Article  CAS  Google Scholar 

  21. Duh YS, Kao CS, Lee WLW. Chemical kinetics on thermal decompositions of dicumyl peroxide studied by calorimetry. J Therm Anal Calorim. 2017;127(1):1089–98. https://doi.org/10.1007/s10973-016-5797-8.

    Article  CAS  Google Scholar 

  22. Opfermann J. Kinetic analysis using multivariate non-linear regression, I. Basic concepts. J Therm Anal Calorim. 2000;60(2):641–58.

    Article  CAS  Google Scholar 

  23. Di SI, Marotta R, Andreozzi R, Caprio V. Kinetic and chemical characterization of thermal decomposition of dicumylperoxide in cumene. J Hazard Mater. 2011;187(1–3):157–63. https://doi.org/10.1016/j.jhazmat.2011.01.023.

    Article  CAS  Google Scholar 

  24. Wang SY, Kossoy AA, Yao YD, Chen LP, Chen WH. Kinetics-based simulation approach to evaluate thermal hazards of benzaldehyde oxime by DSC tests. Thermochim Acta. 2017;655:319–25.

    Article  CAS  Google Scholar 

  25. Liu SH, Lin CP, Shu CM. Thermokinetic parameters and thermal hazard evaluation for three organic peroxides by DSC and TAM III. J Therm Anal Calorim. 2011;106(1):165–72.

    Article  CAS  Google Scholar 

  26. Kemp R. Handbook of thermal analysis and calorimetry, volume 1, principles and practice. Amsterdam: Elsevier; 1998.

    Google Scholar 

  27. Paula RS, Figueredo IM, Vieira RS, Nascimento TL, Cavalcante CL, Machado YL, et al. Castor–babassu biodiesel blends: estimating kinetic parameters by Differential Scanning Calorimetry using the Borchardt and Daniels method. SN Appl Sci. 2019;1(8):1–7.

    Article  Google Scholar 

  28. Wendlandt WW. Thermal methods of analysis. 1974.

  29. Liu SH, Shu CM. Advanced technology of thermal decomposition for AMBN and ABVN by DSC and VSP2. J Therm Anal Calorim. 2015;121(1):533–40. https://doi.org/10.1007/s10973-015-4559-3.

    Article  CAS  Google Scholar 

  30. Liu SH, Hou HY, Shu CM. Thermal hazard evaluation of the autocatalytic reaction of benzoyl peroxide using DSC and TAM III. Thermochim Acta. 2015;605:68–76. https://doi.org/10.1016/j.tca.2015.02.008.

    Article  CAS  Google Scholar 

  31. Mettler TA8000 MT, Columbus, Ohio, USA. STARe software with solaris operating system. Operating Instructions, Switzerland; 1998.

  32. Zhu H, Liu N. Kinetic analysis based on the kinetic compensation effect and optimization calculation. Thermochim Acta. 2020;690:178686. https://doi.org/10.1016/j.tca.2020.178686.

    Article  CAS  Google Scholar 

  33. Liu SH, Cao CR, Lin WC, Shu CM. Experimental and numerical simulation study of the thermal hazards of four azo compounds. J Hazard Mater. 2019;365:164–77. https://doi.org/10.1016/j.jhazmat.2018.11.003.

    Article  CAS  PubMed  Google Scholar 

  34. Luo L, Guo X, Zhang Z, Chai M, Rahman MM, Zhang X, et al. Insight into pyrolysis kinetics of lignocellulosic biomass: isoconversional kinetic analysis by the modified Friedman method. Energy Fuels. 2020;34(4):4874–81. https://doi.org/10.1021/acs.energyfuels.0c00275.

    Article  CAS  Google Scholar 

  35. Liu H, Ahmad MS, Alhumade H, Elkamel A, Sammak S, Shen B. A hybrid kinetic and optimization approach for biomass pyrolysis: the hybrid scheme of the isoconversional methods, DAEM, and a parallel-reaction mechanism. Energy Convers Manag. 2020;208:112531. https://doi.org/10.1016/j.enconman.2020.112531.

    Article  CAS  Google Scholar 

  36. Gao PF, Liu SH, Zhang B, Cao CR, Shu CM. Complex thermal analysis and runaway reaction of 2,2’-azobis (isobutyronitrile) using DSC, STA, VSP2, and GC/MS. J Loss Prev Process Ind. 2019;60:87–95. https://doi.org/10.1016/j.jlp.2019.04.011.

    Article  CAS  Google Scholar 

  37. Kossoy AA, Koludarova EY. Specific features of kinetics evaluation in calorimetric studies of runaway reactions. J Loss Prev Process Ind. 1995;8(4):229–35. https://doi.org/10.1016/0950-4230(95)00018-V.

    Article  Google Scholar 

  38. Andreozzi R, Caprio V, Somma ID, Sanchirico R. Kinetic and safety assessment for salicylic acid nitration by nitric acid/acetic acid system. J Hazard Mater. 2006;134(1):1–7. https://doi.org/10.1016/j.jhazmat.2005.10.037.

    Article  CAS  PubMed  Google Scholar 

  39. Gonzales NO, Levin ME, Zimmerman LW. The reactivity of sodium borohydride with various species as characterized by adiabatic calorimetry. J Hazard Mater. 2007;142(3):639–46. https://doi.org/10.1016/j.jhazmat.2006.08.058.

    Article  CAS  PubMed  Google Scholar 

  40. Kossoy AA, Akhmetshin YG. Identification of kinetic models for the assessment of reaction hazards. Process Saf Prog. 2007;26(3):209–20. https://doi.org/10.1002/prs.10189.

    Article  CAS  Google Scholar 

  41. ChemInform Saint Petersburg (CISP) Ltd, Thermal Safety Software. 2022. http://www.cisp.spb.ru. Accessed 05 May 2022.

Download references

Acknowledgements

The authors are grateful to the Natural Science Foundation of Anhui Province University (KJ2020A0276 and KJ2020A0277); University-level key projects of Anhui University of science and technology (QN2018113); Projects of National Natural Science Foundation of China (52104177); Natural Science Foundation of China (52104177); and technical support from National Yunlin University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Hao Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, G., Hong, S. & Liu, SH. Evaluation of thermal properties and process hazard of 1-hexyl-3-methylimidazolium nitrate through thermodynamic calculations and equilibrium methods. J Therm Anal Calorim 148, 4977–4984 (2023). https://doi.org/10.1007/s10973-022-11818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11818-2

Keywords

Navigation