Skip to main content
Log in

Natural convection of water-based nanofluid in a chamber with a solid body of periodic volumetric heat generation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A computational analysis of convective energy transport of water-based nanosuspension having variable thermal properties has been performed using finite difference method. The considered square cavity includes cold vertical walls and adiabatic horizontal boundaries. The local heater of periodic thermal production is placed on the lower border of the domain. The working fluid is water with copper oxide nanoparticles of low concentration. Control differential equations with initial and boundary conditions have been written using non-dimensional stream function, vorticity and temperature. The resulting nonlinear partial differential equations with associated boundary conditions are solved using the finite difference methodology on a uniform calculation mesh. The analyzed control parameters including volumetric heat generation frequency, initial fraction of nanoparticles, heater location and time have been studied. The physics of the problem is well-explored for the embedded material parameters through tables and graphs. The obtained data have shown that the volumetric thermal production frequency of the source and the initial concentration of nanoparticles have the greatest influence on the heat transfer performance. The energy source temperature can be reduced by up to 20% by varying the characteristics of the source and nanosuspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

c :

Heat capacity (J kg1 K1)

C :

Nanoparticles volume fraction

d p :

Diameter of nanoparticles

\(\overline{D}_{{\text{B}}} = \frac{{k_{{\text{B}}} }}{{3\pi \mu_{{\text{f}}} \left( T \right)d_{{\text{p}}} }}T\) :

Dimensional Brownian diffusion coefficient

\(\overline{D}_{{\text{T}}} = C\left[ {\frac{{\mu_{{\text{f}}} \left( T \right)}}{{\rho_{{\text{f}}} }}} \right]\left( {\frac{{0.26 \cdot k_{{\text{f}}} }}{{2k_{{\text{f}}} + k_{{\text{p}}} }}} \right)\) :

Dimensional thermophoretic diffusion coefficient

D B, D T :

Additional functions

f :

Volumetric thermal production frequency (s–1)

g :

Gravity acceleration (m s–2)

k :

Thermal conductivity (W m1 K1)

K :

Additional function

L :

Length of the enclosure (m)

l :

Distance from the left wall of the chamber to the left wall of the heater (m)

\({\text{Le}} = {{\alpha_{{\text{f}}} } \mathord{\left/ {\vphantom {{\alpha_{{\text{f}}} } {\overline{D}_{{\text{B}}} \left( {T_{{\text{c}}} } \right)}}} \right. \kern-\nulldelimiterspace} {\overline{D}_{{\text{B}}} \left( {T_{{\text{c}}} } \right)}}\) :

Lewis number

M :

Additional function

Nu:

Nusselt number (–)

\(\overline{{{\text{Nu}}}}\) :

Mean Nusselt number (–)

\({\text{Nt}} = \overline{D}_{{\text{B}}} \left( {T_{{\text{c}}} ,C_{0} } \right) \cdot {{\Delta T} \mathord{\left/ {\vphantom {{\Delta T} {\left( {\alpha_{{\text{f}}} \cdot T_{{\text{c}}} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\alpha_{{\text{f}}} \cdot T_{{\text{c}}} } \right)}}\) :

Thermophoresis parameter

p :

Static pressure (Pa)

\({\text{Pr}}_{{\text{T}}} = \frac{{\mu_{{\text{f}}} \left( T \right)}}{{\rho_{{\text{f}}} \alpha_{{\text{f}}} }}\) :

Prandtl number (–)

Q :

Volumetric heat flux (W m–3)

\({\text{Ra}} = \frac{{g \cdot \left( {\rho \beta } \right)_{{\text{f}}} \cdot \Delta T \cdot L^{3} }}{{\mu_{{\text{f}}} \left( {T_{{\text{c}}} } \right) \cdot \alpha_{{\text{f}}} }}\) :

Rayleigh number (–)

T :

Temperature (K)

T c :

Cold wall temperature (K)

t :

Time (s)

\(\overline{u}, \, \overline{v}, \, \overline{w}\) :

Velocity projections (m s1)

u, v, w :

Non-dimensional velocity projections (–)

\(\overline{x}, \, \overline{y}, \, \overline{z}\) :

Coordinates (m)

x, y, z :

Non-dimensional coordinates (–)

α :

Thermal diffusivity (W m2 K1)

β :

Thermal expansion coefficient (K1)

γ :

Dimensionless volumetric heat generation oscillation frequency

T :

Temperature drop (K)

δ = l/L :

Dimensionless distance from the left wall of the chamber to the left wall of the heater

θ :

Non-dimensional temperature (–)

ρ :

Density (kg m3)

τ :

Dimensionless time (–)

φ :

Normalized nanoparticles volume fraction

\(\overline{\psi }_{{\text{x}}} , \, \overline{\psi }_{{\text{y}}} , \, \overline{\psi }_{{\text{z}}}\) :

Vector potential functions (m2 s1)

\(\psi_{{\text{x}}} ,\psi_{{\text{y}}} ,\psi_{{\text{z}}}\) :

Non-dimensional vector potential functions (–)

\(\overline{\omega }_{{\text{x}}} , \, \overline{\omega }_{{\text{y}}} , \, \overline{\omega }_{{\text{z}}}\) :

Projections of vorticity vector (s1)

\(\omega_{{\text{x}}} ,\omega_{{\text{y}}} ,\omega_{{\text{z}}}\) :

Dimensionless projections of vorticity vector (–)

c:

Cooled

f:

Fluid

hs:

Heat source

nf:

Nanofluid

p:

Nanoparticles

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME international mechanical engineering congress and exposition, FED 231/MD 66; 1995. p. 99–105.

  2. Das SK, Choi SUS, Yu W, Pradeep Y. Nanofluids: science and technology. New Jersey: Wiley; 2008.

    Google Scholar 

  3. Nield DA, Bejan A. Convection in porous media. 5th ed. New York: Springer; 2017.

    Book  Google Scholar 

  4. Shenoy A, Sheremet M, Pop I. Convective flow and heat transfer from wavy surfaces: viscous fluids, porous media and nanofluids. New York: CRC Press, Taylor & Francis Group; 2016.

    Book  Google Scholar 

  5. Merkin JH, Pop I, Lok YY, Groşan T. Similarity solutions for the boundary layer flow and heat transfer of viscous fluids, nanofluids, porous media, and micropolar fluids. Oxford: Elsevier; 2021.

    Google Scholar 

  6. Miroshnichenko IV, Sheremet MA, Oztop HF, Abu-Hamdeh N. Natural convection of Al2O3/H2O nanofluid in an open inclined cavity with a heat-generating element. Int J Heat Mass Transf. 2018;126:184–91.

    Article  CAS  Google Scholar 

  7. Bouchoucha AEM, Bessaïh R, Oztop HF, Al-Salem K, Bayrak F. Natural convection and entropy generation in a nanofluid filled cavity with thick bottom wall: effects of non-isothermal heating. Int J Mech Sci. 2017;126:95–105.

    Article  Google Scholar 

  8. Bondarenko DS, Sheremet MA, Oztop HF, Ali ME. Natural convection of Al2O3/H2O nanofluid in a cavity with a heat-generating element. Heatline visualization. Int J Heat Mass Transf. 2019;130:564–74.

    Article  CAS  Google Scholar 

  9. Mahmoodi M. Numerical simulation of free convection of nanofluid in a square cavity with an inside heater. Int J Therm Sci. 2011;50:2161–75.

    Article  CAS  Google Scholar 

  10. Keramat F, Dehghan P, Mofarahi M, Lee C. Numerical analysis of natural convection of alumina-water nanofluid in H-shaped enclosure with a V-shaped baffle. J Taiwan Inst Chem Eng. 2020;111:63–72.

    Article  CAS  Google Scholar 

  11. Islam Z, Azad AK, Hasan MdJ, Hossain R, Rahman MM. Unsteady periodic natural convection in a triangular enclosure heated sinusoidally from the bottom using CNT-water nanofluid. Results Eng. 2022;14:100376.

    Article  CAS  Google Scholar 

  12. Nabwey HA, Rashad AM, Khan WA, Alshber SI. Effectiveness of magnetize flow on nanofluid via unsteady natural convection inside an inclined U-shaped cavity with discrete heating. Alex Eng J. 2022;61:8653–66.

    Article  Google Scholar 

  13. Alsabery AI, Vaezi M, Tayebi T, Hashim I, Ghalambaz M, Chamkha AJ. Nanofluid mixed convection inside wavy cavity with heat source: a non-homogeneous study. Case Stud Therm Eng. 2022;34:102049.

    Article  Google Scholar 

  14. Narankhishig Z, Ham J, Lee H, Cho H. Convective heat transfer characteristics of nanofluids including the magnetic effect on heat transfer enhancement—a review. Appl Therm Eng. 2021;193:116987.

    Article  CAS  Google Scholar 

  15. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

    Article  CAS  Google Scholar 

  16. Selimefendigil F, Ismael MA, Chamkha AJ. Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder. Int J Mech Sci. 2017;124–125:95–108.

    Article  Google Scholar 

  17. Vijaybabu TR. Influence of permeable circular body and CuO/H2O nanofluid on buoyancy-driven flow and entropy generation. Int J Mech Sci. 2020;166:105240.

    Article  Google Scholar 

  18. Biswas N, Manna NK, Datta P, Mahapatra PS. Analysis of heat transfer and pumping power for bottom-heated porous cavity saturated with Cu-water nanofluid. Powder Technol. 2018;326:356–69.

    Article  CAS  Google Scholar 

  19. Sivasankaran S, Alsabery AI, Hashim I. Internal heat generation effect on transient natural convection in a nanofluid-saturated local thermal non-equilibrium porous inclined cavity. Phys A. 2018;509:275–93.

    Article  CAS  Google Scholar 

  20. Garoosi F, Hoseininejad F, Rashidi MM. Numerical study of natural convection heat transfer in a heat exchanger filled with nanofluids. Energy. 2016;109:664–78.

    Article  CAS  Google Scholar 

  21. Emami RY, Siavashi M, Moghaddam GS. The effect of inclination angle and hot wall configuration on Cu-water nanofluid natural convection inside a porous square cavity. Adv Powder Technol. 2018;29:519–36.

    Article  Google Scholar 

  22. Bouzerzour A, Djezzar M, Oztop HF, Tayebi T, Abu-Hamdeh N. Natural convection in nanofluid filled and partially heated annulus: effect of different arrangements of heaters. Phys A. 2020;538:122479.

    Article  CAS  Google Scholar 

  23. Du R, Gokulavani P, Muthtamilselvan M, Al-Amri F, Abdalla B. Influence of the Lorentz force on the ventilation cavity having a centrally placed heated baffle filled with the Cu−Al2O3−H2O hybrid nanofluid. Int Commun Heat Mass Transfer. 2020;116:104676.

    Article  CAS  Google Scholar 

  24. Nath R, Murugesan K. Double diffusive mixed convection in a Cu-Al2O3/water nanofluid filled backward facing step channel with inclined magnetic field and part heating load conditions. J Energy Storage. 2022;47:103664.

    Article  Google Scholar 

  25. Rana P, Kumar A, Gupta G. Impact of different arrangements of heated elliptical body, fins and differential heater in MHD convective transport phenomena of inclined cavity utilizing hybrid nanoliquid: artificial neutral network prediction. Int Commun Heat Mass Transf. 2022;132:105900.

    Article  CAS  Google Scholar 

  26. Roy NC. Flow and heat transfer characteristics of a nanofluid between a square enclosure and a wavy wall obstacle. Phys Fluids. 2019;31:082005.

    Article  Google Scholar 

  27. Roy NC. Natural convection in the annulus bounded by two wavy wall cylinders having a chemically reacting fluid. Int J Heat Mass Transf. 2019;138:1082–95.

    Article  CAS  Google Scholar 

  28. Roy NC. Modeling of a reactor with exothermic reaction bounded by two concentric cylinders. Phys Fluids. 2018;30:083604.

    Article  Google Scholar 

  29. Roy NC. MHD natural convection of a hybrid nanofluid in an enclosure with multiple heat sources. Alex Eng J. 2022;61:1679–94.

    Article  Google Scholar 

  30. Roy NC, Hossain MdA, Gorla RSR, Siddiqa S. Natural convection around a locally heated circular cylinder placed in a rectangular enclosure. J Non-Equilib Thermodyn. 2021;46(1):45–59.

    Article  Google Scholar 

  31. Parvin S, Roy NC, Saha LK, Siddiqa S. Heat transfer characteristics of nanofluids from a sinusoidal corrugated cylinder placed in a square cavity. Proc Inst Mech Eng Part C J Mech Eng Sci. 2022;236(5):2617–30.

    Article  Google Scholar 

  32. Saha L, Saha LK, Bala S, Roy NC. Natural convection flow in a fluid-saturated non-Darcy porous medium within a complex wavy wall reactor. J Therm Anal Calorim. 2020;146:325–40.

    Article  Google Scholar 

  33. Sajid HU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;103:556–92.

    Article  CAS  Google Scholar 

  34. Sajid MU, Bicer Y. Nanofluids as solar spectrum splitters: a critical review. Sol Energy. 2020;207:974–1001.

    Article  CAS  Google Scholar 

  35. Sajid MU, Bicer Y. Performance assessment of spectrum selective nanofluid-based cooling for a self-sustaining greenhouse. Energy Technol. 2021;9:2000875.

    Article  Google Scholar 

  36. Sajid HU, Ali HM, Yusuf B. Energetic performance assessment of magnesium oxide-water nanofluid in corrugated omnichannel heat sinks: an experimental study. Int J Energy Res. 2020. https://doi.org/10.1002/er.6024.

    Article  Google Scholar 

  37. Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO2-water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137:1279–94.

    Article  CAS  Google Scholar 

  38. Hawaz S, Ali HM, Sajid MU, Said Z, Tiwari AK, Sundar LS, Li C. Oriented square shaped pin-fin heat sink: performance evaluation employing mixture based on ethylene glycol/water graphene oxide nanofluid. Appl Therm Eng. 2022;206:118085.

    Article  Google Scholar 

  39. Astanina MS, Riahi MK, Abu-Nada E, Sheremet MA. Magnetohydrodynamic in partially heated square cavity with variable properties: discrepancy in experimental and theoretical conductivity correlations. Int J Heat Mass Transf. 2018;116:532–48.

    Article  CAS  Google Scholar 

  40. Astanina MS, Abu-Nada E, Sheremet MA. Combined effects of thermophoresis, Brownian motion and nanofluid variable properties on CuO-water nanofluid natural convection in a partially heated square cavity. J Heat Transf. 2018;140(8):082401.

    Article  Google Scholar 

  41. Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87:153107.

    Article  Google Scholar 

  42. Abu-Nada E, Masoud Z, Oztop HF, Campo A. Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci. 2010;49:479–91.

    Article  CAS  Google Scholar 

  43. Haddad Z, Abu-Nada E, Oztop HF, Mataoui A. Natural convection in nanofluids: are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement. Int J Therm Sci. 2012;57:152–62.

    Article  CAS  Google Scholar 

  44. Nguyen T, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Angue Minsta H. Temperature and particle-size dependent viscosity data for water based nanofluids-hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28:1492–506.

    Article  CAS  Google Scholar 

  45. Ho CJ, Liu WK, Chang YS, Lin CC. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci. 2010;49:1345–53.

    Article  CAS  Google Scholar 

  46. Saghir MZ, Ahadi A, Mohamad A, Srinivasan S. Water aluminum oxide nanofluid benchmark model. Int J Therm Sci. 2016;109:148–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Tomsk State University Development Programme (Priority–2030). The authors would like to thank very much to the very competent Reviewers for their valuable time spent on reading the manuscript and for the valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Pop.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astanina, M.S., Pop, I. & Sheremet, M.A. Natural convection of water-based nanofluid in a chamber with a solid body of periodic volumetric heat generation. J Therm Anal Calorim 148, 1011–1024 (2023). https://doi.org/10.1007/s10973-022-11735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11735-4

Keywords

Navigation