Skip to main content
Log in

Applications of Bernoulli wavelet collocation method in the analysis of Jeffery–Hamel flow and heat transfer in Eyring–Powell fluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, we developed the new functional matrix of integration using the Bernoulli wavelet and proposed a novel technique called the Bernoulli wavelet collocation method (BWCM). The main intention of this study is to present a consistent methodology to compute an imprecise solution of Jeffery–Hamel flow and heat transfer in Eyring–Powell fluid in the presence of a magnetic field by using the BWCM. Jeffery–Hamel flows occur in different realistic situations connecting flow between two non-parallel walls. Applications of such fluids in biological and industrial sciences brought great concern to the investigation of flow characteristics in converging and diverging channels. Here, we transform the nonlinear partial differential equations into coupled ordinary differential equations (ODEs) via similarity transformation. Using the BWCM, coupled ODEs are converted into a system of a nonlinear algebraic equation. This technique finds the numerical solution without any restrictive assumptions and avoids round-off errors. The numerical solutions attained by the proposed scheme point out that the approach is easy to implement and computationally very beautiful. The validity of the BWCM is ascertained by comparing our results with the Haar wavelet method and numerical differentiation Solver in Mathematica results. The influence of several emerging dimensionless parameters, namely the Eyring–Powell parameter, Hartman number, Eckert number, local Reynolds number, and the angle between the two walls on velocity and temperature evolution in the boundary layer regime, is examined in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

Abbreviations

Γ:

Extra-stress tensor (Nm2)

μ:

Shear viscosity (kg m1 s1)

\(\beta\) and \(d\) :

Characteristics of the Eyring–Powell model

\({A}_{1}\) :

Kinematical tensor

\(V\) :

Velocity vector

\(J\) :

Joule current (A m2)

\(E\) :

Electric field (V m1)

\(B\) :

External magnetic field (kg s2 A1)

\(k\) :

Thermal conductivity (W m1 K1)

\(C_{{\text{P}}}\) :

Specific heat constant (J kg1 K1)

\(\sigma\) :

Electrical conductivity (S m1)

\(Ep\) :

Eyring–Powell parameter

\(\lambda\) :

Local non-Newtonian parameter

\({\text{Re}}\) :

Local Reynolds number

\({\text{Ha}}\) :

Hartmann number

\({\text{Pr}}\) :

Prandtl number

\({\text{Ec}}\) :

Eckert number

\(q_{{\text{w}}}\) :

Surface heat flux (Wm2)

\(C_{{\text{f}}}\) :

Wall shear stress

\(N_{{\text{u}}}\) :

Nusselt number

\(u, v\) :

Velocity components (ms1)

\(T\) :

Fluid temperature (K)

\(T_{{\text{w}}}\) :

Wall temperature (K)

\(\rho\) :

Density (kg m3)

References

  1. Jeffery GB. The two-dimensional steady motion of a viscous fluid. Philos Mag Series. 1915;6(29):455–65.

    Article  Google Scholar 

  2. Hamel G, Bewgungen S, Flussigkeiten Z (1916) Jahresbericht der Deutschen Mathematiker-Vereinigung. 25:34–60

  3. Esmaeilpour M, Ganji DD. Solution of the Jeffery–Hamel flow problem by optimal homotopy asymptotic method. Comput Math Appl. 2010;59(11):3405–11.

    Article  Google Scholar 

  4. Sushila G, Singh J, Shishodia YS. A modified analytical technique for Jeffery-Hamel flow using sumudu transform. J Assoc Arab Univ Basic Appl Sci. 2014;16(1):11–5.

    Google Scholar 

  5. Meher R, Patel ND. Analytical Investigation of MHD Jeffery-Hamel flow problem with heat transfer by differential transform method. SN Appl Sci. 2019;1:656.

    Article  Google Scholar 

  6. Uribe FJ, Díaz-Herrera E, Bravo A, Peralta-Fabi R. On the stability of the Jeffery–Hamel flow. Phys Fluids. 1997;9(9):2798–800.

    Article  CAS  Google Scholar 

  7. Nagler J. Jeffery–Hamel flow of non-Newtonian fluid with nonlinear viscosity and wall frictio. Appl Math Mech. 2017;38(6):815–30.

    Article  Google Scholar 

  8. Kumbinarasaiah S, Raghunatha KR. Numerical solution of the Jeffery–Hamel flow through the wavelet technique. Heat Transf. 2021. https://doi.org/10.1002/htj.22364.

    Article  Google Scholar 

  9. Bilal M, Ashbar S. Flow and heat transfer analysis of Eyring-Powell fluid over the stratified sheet with mixed convection. J Egypt Math Soc. 2020;28:40.

    Article  Google Scholar 

  10. Mustafa T. Eyring-Powell fluid flow through a circular pipe and heat transfer: full solutions. Int J Numer Meth Heat Fluid Flow. 2020;30(11):4765–74.

    Article  Google Scholar 

  11. Ali N, Nazeer F, Nazeer M. Flow and heat transfer analysis of an eyring-powell fluid in a pipe. Zeitschrift für Naturforschung A. 2018;73(3):265–74.

    Article  CAS  Google Scholar 

  12. Rahimi J, Ganji DD, Khaki M, Hosseinzadeh K. Solution of the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linear stretching sheet by collocation method. Alex Eng J. 2017;56(4):621–7.

    Article  Google Scholar 

  13. Khan NA, Sultan F, Shaikh A, Ara A, Rubbab Q. Haar wavelet solution of the MHD Jeffery–Hamel flow and heat transfer in Eyring-Powell fluid. AIP Adv. 2016;6(11):115102.

    Article  Google Scholar 

  14. Meher R, Patel ND. A study on magneto hydrodynamics Jeffery-Hamel flow with heat transfer problem in eyring-powell fluid using differential transform method. J Appl Math Comput Mech. 2019;18(3):57–68.

    Article  Google Scholar 

  15. Onyango ER, Kinyanjui MN, Kimathi M, Uppal SM. Heat and mass transfer on MHD Jeffrey–Hamel flow in presence of inclined magnetic field. Appl Comput Math. 2020;9(4):108–17.

    Article  Google Scholar 

  16. Ratas M, Salupere A, Majak J. Solving nonlinear PDEs using the higher-order Haar wavelet method on nonuniform and adaptive grids. Math Model Anal. 2021;26(1):147–69.

    Article  Google Scholar 

  17. Verma AK, Kumar N, Tiwari D. Haar wavelets collocation method for a system of nonlinear singular differential equations. Eng Comput. 2021;38(2):659–98.

    Article  Google Scholar 

  18. Patel VK, Singh S, Singh VK. Numerical wavelets scheme to complex partial differential equation arising from Morlet continuous wavelet transform. Numer Methods Partial Differ Equ. 2021;37:1163–99.

    Article  Google Scholar 

  19. Chouhan D, Mishra V, Srivastava HM. Bernoulli wavelet method for the numerical solution of anomalous infiltration and diffusion modeling by nonlinear fractional differential equations of variable order. Results Appl Math. 2021;10: 100146.

    Article  Google Scholar 

  20. Kumbinarasaiah S. Numerical solution for the (2+1) dimensional Sobolev and regularized long wave equations arise in fluid mechanics via wavelet technique. Partial Differ Equ Appl Math. 2021;3: 100016.

    Article  Google Scholar 

  21. Kumbinarasaiah S, Raghunatha KR. Study of special types of boundary layer natural convection flow problems through the clique polynomial method. Heat Transfer. 2022;51:434–50.

    Article  Google Scholar 

  22. Rinoshika A, Rinoshika H. Application of multi-dimensional wavelet transform to fluid mechanics. Theor Appl Mech Lett. 2020;10(2):98–115.

    Article  Google Scholar 

  23. Kumbinarasaiah S, Raghunatha KR, Rezazadeh M, Mustafa Inc. A solution of coupled nonlinear differential equations arising in a rotating micropolar nanofluid flow system by Hermite wavelet technique. Eng Comput. 2021.

  24. De Stefano G, Vasilyev O. wavelet-based adaptive simulations of three-dimensional flow past a square cylinder. J Fluid Mech. 2014;748:433–56.

    Article  Google Scholar 

  25. Raghunatha KR, Kumbinarasaiah S. Laguerre wavelet numerical solution of micropolar fluid flow in a porous channel with high mass transfer. J Interdiscip Math. 2021;24(8):2269–82.

    Article  Google Scholar 

  26. Hayat T, Iqbal Z, Qasim M, Obaidat S. Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions. Int J Heat Mass Transf. 2012;55(7–8):1817–22.

    Article  Google Scholar 

  27. Keshavarz E, Ordokhani Y, Razzaghi M. Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl Math Model. 2014;38:6038–51.

    Article  Google Scholar 

  28. Sadeghi A, Amini Y, Saidi MH, Chakraborty S. Numerical modeling of surface reaction kinetics in electrokinetically actuated microfluidic devices. Anal Chim Acta. 2014;838:64–75.

    Article  CAS  Google Scholar 

  29. Sadeghi A, Amini Y, Saidi MH, Yavari H. Shear-rate-dependent rheology effects on mass transport and surface reactions in biomicrofluidic devices. AIChE J. 2015;61(6):1912–24.

    Article  CAS  Google Scholar 

  30. Faheem M, Raza A, Khan A. Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations. Math Comput Simul. 2021;180:72–92.

    Article  Google Scholar 

  31. Hassanvand A, Saei Moghaddam M, Barzegar Gerdroodbary M, Amini Y. Analytical study of heat and mass transfer in axisymmetric unsteady flow by ADM. J Comput Appl Res Mech Eng (JCARME). 2021;11(1):151–63.

    Google Scholar 

  32. Kumbinarasaiah S, Raghunatha KR. The applications of Hermite wavelet method to nonlinear differential equations arising in heat transfer. Int J Thermofluids. 2021;9: 100066.

    Article  Google Scholar 

  33. Rahimkhani P, Ordokhani Y, Babolian E. Fractional-order Bernoulli wavelets and their application. Appl Math Model. 2016;40(17–18):8087–107.

    Article  Google Scholar 

  34. Rahimkhani P, Moeti R. Numerical solution of the fractional order duffing-vander pol oscillator equation by using Bernoulli wavelets collocation method. Int J Appl Comput Math. 2018;4(2):1–18.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the reviewers profusely for their constructive comments which helped in improving the paper considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumbinarasaiah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients and functions that appeared in the formulation of the problem are given below.

Derivation of kinematical tensor (\(A_{1}\))

To find \({A}_{1}=\nabla V+(\nabla {V)}^\text{T}\):

$$\nabla V = \nabla \otimes V = \left( {e_{{\text{r}}} \frac{\partial }{\partial r} + e_{{\uptheta }} \frac{1}{r}\frac{\partial }{\partial \theta }} \right) \otimes \left( {u\,e_{{\text{r}}} + v\,e_{{\uptheta }} } \right)$$
$$\nabla V = e_{{\text{r}}} \otimes \frac{{\partial \left( {u\,e_{{\text{r}}} } \right)}}{\partial r} + e_{{\text{r}}} \otimes \frac{{\partial \left( {v\,e_{{\uptheta }} } \right)}}{\partial r} + e_{{\uptheta }} \otimes \frac{1}{r}\frac{{\partial \left( {u\,e_{{\text{r}}} } \right)}}{\partial \theta } + e_{{\uptheta }} \otimes \frac{1}{r}\frac{{\partial \left( {v\,e_{{\uptheta }} } \right)}}{\partial \theta }$$
$$\nabla V = e_\text{r} \otimes u\frac{{\partial e_{{\text{r}}} }}{\partial r} + e_{{\text{r}}} \otimes \frac{\partial u}{{\partial r}}e_{{\text{r}}} + e_{{\text{r}}} \otimes v\frac{{\partial e_{{\uptheta }} }}{\partial r} + e_{{\text{r}}} \otimes e_{{\uptheta }} \frac{\partial v}{{\partial r}} + e_{{\uptheta }} \otimes \frac{u}{r}\frac{{\partial \,e_{{\text{r}}} }}{\partial \theta } + e_{{\uptheta }} \otimes \frac{1}{r}\,e_{{\text{r}}} \frac{\partial u}{{\partial \theta }} + e_{{\uptheta }} \otimes \frac{v}{r}\frac{{\partial e_{{\uptheta }} }}{\partial \theta } + e_{{\uptheta }} \otimes \frac{1}{r}e_{{\uptheta }} \frac{\partial v}{{\partial \theta }}$$

We know that \(\frac{{\partial e_{{\text{r}}} }}{\partial r} = \frac{{\partial e_{{\uptheta }} }}{\partial r} = 0;\,\,\frac{{\partial \,e_{{\text{r}}} }}{\partial \theta } = e_{{\uptheta }} ,\,\frac{{\partial e_{{\uptheta }} }}{\partial \theta } = - e_{{\text{r}}}\)

$$\nabla V = e_{{\text{r}}} \otimes u\left( 0 \right) + e_{{\text{r}}} \otimes \frac{\partial u}{{\partial r}}e_{{\text{r}}} + e_{{\text{r}}} \otimes v\left( 0 \right) + e_{{\text{r}}} \otimes e_{{\uptheta }} \frac{\partial v}{{\partial r}} + e_{{\uptheta }} \otimes \frac{u}{r}\left( {e_{{\uptheta }} } \right) + e_{{\uptheta }} \otimes \frac{1}{r}\,e_{{\text{r}}} \frac{\partial u}{{\partial \theta }} + e_{{\uptheta }} \otimes \frac{v}{r}\left( { - e_{{\text{r}}} } \right) + e_{{\uptheta }} \otimes \frac{1}{r}e_{{\uptheta }} \frac{\partial v}{{\partial \theta }}$$
$$\nabla V = e_{{\text{r}}} \otimes \frac{\partial u}{{\partial r}}e_{{\text{r}}} + e_{{\text{r}}} \otimes e_{{\uptheta }} \frac{\partial v}{{\partial r}} + e_{{\uptheta }} \otimes \frac{u}{r}\left( {e_{{\uptheta }} } \right) + e_{{\uptheta }} \otimes \frac{1}{r}\,e_{{\text{r}}} \frac{\partial u}{{\partial \theta }} + e_{{\uptheta }} \otimes \frac{v}{r}\left( { - e_{{\text{r}}} } \right) + e_{{\uptheta }} \otimes \frac{1}{r}e_{{\uptheta }} \frac{\partial v}{{\partial \theta }}$$
$$\nabla V = \frac{\partial u}{{\partial r}}e_{{\text{r}}} \otimes e_{{\text{r}}} + \frac{\partial v}{{\partial r}}e_{{\text{r}}} \otimes e_{{\uptheta }} + \frac{u}{r}e_{{\uptheta }} \otimes e_{{\uptheta }} + \frac{1}{r}\,\frac{\partial u}{{\partial \theta }}e_{{\uptheta }} \otimes e_{{\text{r}}} - \frac{v}{r}e_{{\uptheta }} \otimes e_{{\text{r}}} + \frac{1}{r}\frac{\partial v}{{\partial \theta }}e_{{\uptheta }} \otimes e_{{\uptheta }}$$
$$\nabla V = \frac{\partial u}{{\partial r}}e_{{\text{r}}} \otimes e_{{\text{r}}} + \frac{\partial v}{{\partial r}}e_{{\text{r}}} \otimes e_{{\uptheta }} + \left( {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} - \frac{v}{r}} \right)e_{{\uptheta }} \otimes e_{{\text{r}}} + \left( {\frac{1}{r}\frac{\partial v}{{\partial \theta }} + \frac{u}{r}} \right)e_{{\uptheta }} \otimes e_{{\uptheta }}$$

\(\nabla V = \left[ {\begin{array}{*{20}c} {\frac{\partial u}{{\partial r}}} & {\frac{\partial v}{{\partial r}}} \\ {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} - \frac{v}{r}} & {\frac{1}{r}\frac{\partial v}{{\partial \theta }} + \frac{u}{r}} \\ \end{array} } \right]\) and \(\left( {\nabla V} \right)^{T} = \left[ {\begin{array}{*{20}c} {\frac{\partial u}{{\partial r}}} & {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} - \frac{v}{r}} \\ {\frac{\partial v}{{\partial r}}} & {\frac{1}{r}\frac{\partial v}{{\partial \theta }} + \frac{u}{r}} \\ \end{array} } \right]\)

$$A_{1} = \nabla V + \left( {\nabla V} \right)^\text{T} = \left[ {\begin{array}{*{20}c} {\frac{\partial u}{{\partial r}}} & {\frac{\partial v}{{\partial r}}} \\ {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} - \frac{v}{r}} & {\frac{1}{r}\frac{\partial v}{{\partial \theta }} + \frac{u}{r}} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {\frac{\partial u}{{\partial r}}} & {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} - \frac{v}{r}} \\ {\frac{\partial v}{{\partial r}}} & {\frac{1}{r}\frac{\partial v}{{\partial \theta }} + \frac{u}{r}} \\ \end{array} } \right]$$
$$A_{1} = \nabla V + \left( {\nabla V} \right)^\text{T} = \left[ {\begin{array}{*{20}c} {2\frac{\partial u}{{\partial r}}} & {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} + \frac{\partial v}{{\partial r}} - \frac{v}{r}} \\ {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} + \frac{\partial v}{{\partial r}} - \frac{v}{r}} & {2\left( {\frac{1}{r}\frac{\partial v}{{\partial \theta }} + \frac{u}{r}} \right)} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {A_\text{rr} } & {A_{\text{r}\uptheta }} \\ {A_{\uptheta\text{r}} } & {A_{\uptheta \uptheta } } \\ \end{array} } \right]$$
$$A_{1}^{2} = \left[ {\begin{array}{*{20}c} {2\frac{\partial u}{{\partial r}}} & {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} + \frac{\partial v}{{\partial r}} - \frac{v}{r}} \\ {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} + \frac{\partial v}{{\partial r}} - \frac{v}{r}} & {2\left( {\frac{1}{r}\frac{\partial v}{{\partial \theta }} + \frac{u}{r}} \right)} \\ \end{array} } \right]\,\,\,\left[ {\begin{array}{*{20}c} {2\frac{\partial u}{{\partial r}}} & {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} + \frac{\partial v}{{\partial r}} - \frac{v}{r}} \\ {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} + \frac{\partial v}{{\partial r}} - \frac{v}{r}} & {2\left( {\frac{1}{r}\frac{\partial v}{{\partial \theta }} + \frac{u}{r}} \right)} \\ \end{array} } \right]$$
$$A_{1}^{2} = \left[ {\begin{array}{*{20}l} {4\left( {\frac{\partial u}{{\partial r}}} \right)^{2} + \left( {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} + \frac{\partial v}{{\partial r}} - \frac{v}{r}} \right)^{2} } \hfill & W \hfill \\ W \hfill & {\left( {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} + \frac{\partial v}{{\partial r}} - \frac{v}{r}} \right)^{2} + 4\left( {\frac{1}{r}\frac{\partial v}{{\partial \theta }} + \frac{u}{r}} \right)^{2} } \hfill \\ \end{array} } \right]$$

where \(W = 2\frac{\partial u}{{\partial r}}\left( {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} + \frac{\partial v}{{\partial r}} - \frac{v}{r}} \right) + 2\left( {\frac{1}{r}\frac{\partial v}{{\partial \theta }} + \frac{u}{r}} \right)\left( {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} + \frac{\partial v}{{\partial r}} - \frac{v}{r}} \right)\) and

$$\dot{\gamma }^{2} = \frac{1}{2}Tr\left( {A_{1}^{2} } \right) = 2\left( {\frac{\partial u}{{\partial r}}} \right)^{2} + \left( {\frac{1}{r}\,\frac{\partial u}{{\partial \theta }} + \frac{\partial v}{{\partial r}} - \frac{v}{r}} \right)^{2} + 2\left( {\frac{1}{r}\frac{\partial v}{{\partial \theta }} + \frac{u}{r}} \right)^{2} .$$

Now, \(\Gamma = \left( {\mu + \frac{1}{\beta d} - \frac{{\dot{\gamma }^{2} }}{{6\beta d^{3} }}} \right)A_{1}\).

We know that \(A_{1} = \left[ {\begin{array}{*{20}c} {A_\text{rr} } & {A_{\text{r}\uptheta } } \\ {A_{\uptheta \text{r}} } & {A_{\uptheta \uptheta } } \\ \end{array} } \right]\) then

$$\Gamma_{{{\text{rr}}}} = \left( {\mu + \frac{1}{\beta d} - \frac{{\dot{\gamma }^{2} }}{{6\beta d^{3} }}} \right)A_{{{\text{rr}}}}$$
$$\Gamma _{{\text{r}\uptheta }} = \left( {\mu + \frac{1}{{\beta d}} - \frac{{\dot{\gamma }^{2} }}{{6\beta d^{3} }}} \right)A_{{\text{r}\uptheta }}$$
$$\Gamma _{{\theta \theta }} = \left( {\mu + \frac{1}{{\beta d}} - \frac{{\dot{\gamma }^{2} }}{{6\beta d^{3} }}} \right)A_{{\theta \theta }}$$

Derivation of general momentum equation:

$$\rho \left[ {\frac{{\partial \vec{q}}}{\partial t} + \left( {\vec{q} \cdot \nabla } \right)\vec{q}} \right] = - \nabla p + \nabla \cdot \Gamma$$

(i) Expression of \(\left( {\vec{q} \cdot \nabla } \right)\vec{q}\):

$$\vec{q} \cdot \nabla = \left( {u\,e_{{\text{r}}} + v\,e_{{\uptheta }} } \right) \cdot \left( {e_{{\text{r}}} \frac{\partial }{\partial r} + e_{{\uptheta }} \frac{1}{r}\frac{\partial }{\partial \theta }} \right) = u\frac{\partial }{\partial r} + v\frac{1}{r}\frac{\partial }{\partial \theta }$$
$$\left( {\vec{q} \cdot \nabla } \right)\vec{q} = \left( {u\frac{\partial }{\partial r} + v\frac{1}{r}\frac{\partial }{\partial \theta }} \right)\left( {u\,e_{{\text{r}}} + v\,e_{{\uptheta }} } \right)$$
$$\left( {\vec{q} \cdot \nabla } \right)\vec{q} = u\frac{{\partial \left( {u\,e_{{\text{r}}} } \right)}}{\partial r} + u\frac{{\partial \left( {v\,e_{{\uptheta }} } \right)}}{\partial r} + v\frac{1}{r}\frac{{\partial \left( {u\,e_{{\text{r}}} } \right)}}{\partial \theta } + v\frac{1}{r}\frac{{\partial \left( {v\,e_{{\uptheta }} } \right)}}{\partial \theta }$$
$$\left( {\vec{q} \cdot \nabla } \right)\vec{q} = u\,\,u\frac{{\partial \left( {\,e_{{\text{r}}} } \right)}}{\partial r} + u\,\frac{\partial u}{{\partial r}}e_{{\text{r}}} + u\,v\frac{{\partial \left( {e_{{\uptheta }} } \right)}}{\partial r} + u\,\,\frac{\,\partial v}{{\partial r}}e_{{\uptheta }} + u\,v\frac{1}{r}\frac{{\partial \left( {e_{{\text{r}}} } \right)}}{\partial \theta } + v\frac{1}{r}\frac{\partial u}{{\partial \theta }}e_{{\text{r}}} + v\,v\frac{1}{r}\frac{{\partial \left( {\,e_{{\uptheta }} } \right)}}{\partial \theta } + v\frac{1}{r}\frac{\partial v}{{\partial \theta }}e_{{\uptheta }}$$

We know that \(\frac{{\partial \left( {\,e_{{\text{r}}} } \right)}}{\partial r} = \frac{{\partial \left( {e_{{\uptheta }} } \right)}}{\partial r} = 0;\frac{{\partial \left( {e_{{\text{r}}} } \right)}}{\partial \theta } = e_{{\uptheta }} ,\,\,\frac{{\partial \left( {\,e_{{\uptheta }} } \right)}}{\partial \theta } = - e_{{\text{r}}}\)

$$\left( {\vec{q} \cdot \nabla } \right)\vec{q} = u\,\,u\left( 0 \right) + u\,\frac{\partial u}{{\partial r}}e_{{\text{r}}} + u\,v\left( 0 \right) + u\,\,\frac{\,\partial v}{{\partial r}}e_{{\uptheta }} + u\,v\frac{1}{r}\left( {e_{{\uptheta }} } \right) + v\frac{1}{r}\frac{\partial u}{{\partial \theta }}e_{{\text{r}}} + v\,v\frac{1}{r}\left( { - e_{{\text{r}}} } \right) + v\frac{1}{r}\frac{\partial v}{{\partial \theta }}e_{{\uptheta }}$$
$$\left( {\vec{q} \cdot \nabla } \right)\vec{q} = \left( {u\,\frac{\partial u}{{\partial r}} + \frac{v}{r}\frac{\partial u}{{\partial \theta }} - \frac{{v^{2} }}{r}} \right)e_{{\text{r}}} + \left( {u\,\,\frac{\,\partial v}{{\partial r}} + \frac{v}{r}\frac{\partial v}{{\partial \theta }} + \frac{u\,v}{r}} \right)e_{{\uptheta }}$$

(ii) Expressions of the shears of Eyring–Powell fluid in polar coordinates (\(\Gamma_\text{rr} ,\,\Gamma_{\text{r}\uptheta } ,\,\Gamma_{\uptheta \uptheta }\)):

$$\nabla \cdot \Gamma = \left( {e_\text{r} \frac{\partial }{{\partial r}} + e_{\uptheta } \frac{1}{r}\frac{\partial }{{\partial \theta }}} \right) \cdot \left[ {\Gamma _\text{{rr}} e_\text{r} \otimes e_\text{r} + \Gamma _{{\text{r}\uptheta }} e_\text{r} \otimes e_{\uptheta } + \Gamma _{{\uptheta \text{r}}} e_{\uptheta } \otimes e_\text{r} + \Gamma _{{\uptheta \uptheta }} e_{\uptheta } \otimes e_{\uptheta } } \right]$$
$$\begin{gathered} \nabla \cdot \Gamma = \left( {e_\text{r} \frac{\partial }{{\partial r}}} \right) \cdot \left[ {\Gamma _\text{{rr}} e_\text{r} \otimes e_\text{r} + \Gamma _{{\text{r}\uptheta }} e_\text{r} \otimes e_{\uptheta } + \Gamma _{{\uptheta \text{ r}}} e_{\uptheta } \otimes e_\text{r} + \Gamma _{{\uptheta \uptheta }} e_{\uptheta } \otimes e_{\uptheta } } \right] + \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\left( {e_{\theta } \frac{1}{r}\frac{\partial }{{\partial \theta }}} \right) \cdot \left[ {\Gamma _\text{{rr}} e_\text{r} \otimes e_\text{r} + \Gamma _{{\text{r}\uptheta }} e_\text{r} \otimes e_{\uptheta } + \Gamma _{{\uptheta \text{r}}} e_{\uptheta } \otimes e_\text{r} + \Gamma _{{\uptheta \uptheta }} e_{\uptheta } \otimes e_{\uptheta } } \right] \hfill \\ \end{gathered}$$
$$\begin{gathered} \nabla \cdot \Gamma = \left( {e_\text{r} \frac{\partial }{{\partial r}}} \right) \cdot \left( {\Gamma _\text{{rr}} e_\text{r} \otimes e_\text{r} } \right) + \left( {e_\text{r} \frac{\partial }{{\partial r}}} \right) \cdot \left( {\Gamma _{{\text{r}\uptheta }} e_\text{r} \otimes e_{\uptheta } } \right) + \left( {e_\text{r} \frac{\partial }{{\partial r}}} \right) \cdot \left( {\Gamma _{{\uptheta\text{r}}} e_{\uptheta } \otimes e_\text{r} } \right) + \left( {e_\text{r} \frac{\partial }{{\partial r}}} \right) \cdot \left( {\Gamma _{{\uptheta \uptheta }} e_{\uptheta } \otimes e_{\uptheta } } \right) + \hfill \\ \left( {\frac{{e_{\uptheta } }}{\text{r}}\frac{\partial }{{\partial \theta }}} \right) \cdot \left( {\Gamma _\text{{rr}} e_\text{r} \otimes e_\text{r} } \right) + \left( {\frac{{e_{\uptheta } }}{\text{r}}\frac{\partial }{{\partial \theta }}} \right) \cdot \left( {\Gamma _{{\text{r}\uptheta }} e_\text{r} \otimes e_{\uptheta } } \right) + \left( {\frac{{e_{\uptheta } }}{\text{r}}\frac{\partial }{{\partial \theta }}} \right) \cdot \left( {\Gamma _{{\uptheta\text{r}}} e_{\uptheta } \otimes e_\text{r} } \right) + \left( {\frac{{e_{\uptheta } }}{r}\frac{\partial }{{\partial \theta }}} \right) \cdot \left( {\Gamma _{{\uptheta \uptheta }} e_{\uptheta } \otimes e_{\uptheta } } \right) \hfill \\ = a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{6} + a_{7} + a_{8} \hfill \\ \end{gathered}$$
$$\begin{aligned} a_{1} = & \left( {e_{{\text{r}}} \frac{\partial }{\partial r}} \right) \cdot \left( {\Gamma_{{{\text{rr}}}} e_{{\text{r}}} \otimes e_{{\text{r}}} } \right) = e_{{\text{r}}} \cdot \frac{\partial }{\partial r}\left( {\Gamma_{{{\text{rr}}}} e_{{\text{r}}} \otimes e_{{\text{r}}} } \right) = e_{{\text{r}}} \cdot \left[ {\frac{{\partial \Gamma_{{{\text{rr}}}} }}{\partial r}\left( {e_{{\text{r}}} \otimes e_{{\text{r}}} } \right) + \Gamma_{{{\text{rr}}}} \left( {\frac{{\partial e_{{\text{r}}} }}{\partial r} \otimes e_{{\text{r}}} } \right) + \Gamma_{{{\text{rr}}}} \left( {e_{{\text{r}}} \otimes \frac{{\partial e_{{\text{r}}} }}{\partial r}} \right)} \right] \\ = & \frac{{\partial \Gamma_{{{\text{rr}}}} }}{\partial r}e_{{\text{r}}} \,\,\,\,\,\,\,\,\left( {\because \frac{{\partial e_{{\text{r}}} }}{\partial r} = 0} \right) \\ \end{aligned}$$
$$\begin{aligned} a_{2} = & \left( {e_\text{r} \frac{\partial }{{\partial r}}} \right) \cdot \left( {\Gamma _{{\text{r}\uptheta }} e_\text{r} \otimes e_{\uptheta } } \right) = e_\text{r} \cdot \frac{\partial }{{\partial r}}\left( {\Gamma _{{\text{r}\uptheta }} e_\text{r} \otimes e_{\uptheta } } \right) = e_\text{r} \cdot \left[ {\frac{{\partial \Gamma _{{\text{r}\uptheta }} }}{{\partial r}}\left( {e_\text{r} \otimes e_{\uptheta } } \right) + \Gamma _{{\text{r}\uptheta }} \left( {\frac{{\partial e_{r} }}{{\partial r}} \otimes e_{\uptheta } } \right) + \Gamma _{{\text{r}\uptheta }} \left( {e_\text{r} \otimes \frac{{\partial e_{\uptheta } }}{{\partial r}}} \right)} \right] \\ = & \frac{{\partial \Gamma _{{\text{r}\uptheta }} }}{{\partial r}}e_{\uptheta } \,\left( {\because \frac{{\partial e_\text{r} }}{{\partial r}} = \frac{{\partial e_{\uptheta } }}{{\partial r}} = 0} \right) \\ \end{aligned}$$
$$\begin{aligned} a_{3} = & \left( {e_{{\text{r}}} \frac{\partial }{\partial r}} \right) \cdot \left( {\Gamma_{{{\uptheta \text{r}}}} e_{{\uptheta }} \otimes e_{{\text{r}}} } \right) = e_{{\text{r}}} \cdot \frac{\partial }{\partial r}\left( {\Gamma_{{{\uptheta \text{r}}}} e_{{\uptheta }} \otimes e_{{\text{r}}} } \right) = e_{{\text{r}}} \cdot \left[ {\frac{{\partial \Gamma_{{{\uptheta \text{r}}}} }}{\partial r}\left( {e_{{\uptheta }} \otimes e_{{\text{r}}} } \right) + \Gamma_{{{\uptheta \text{r}}}} \left( {\frac{{\partial e_{{\uptheta }} }}{\partial r} \otimes e_{{\text{r}}} } \right) + \Gamma_{{{\uptheta \text{r}}}} \left( {e_{{\uptheta }} \otimes \frac{{\partial e_{{\text{r}}} }}{\partial r}} \right)} \right] = 0 \\ & \left( {\because e_{{\text{r}}} \cdot \left( {e_{{\uptheta }} \otimes e_{{\text{r}}} } \right) = \frac{{\partial e_{{\uptheta }} }}{\partial r} = \frac{{\partial e_{{\text{r}}} }}{\partial r} = 0} \right) \\ \end{aligned}$$
$$\begin{gathered} a_{4} = \left( {e_\text{r} \frac{\partial }{{\partial r}}} \right) \cdot \left( {\Gamma _{{\uptheta \uptheta }} e_{\uptheta } \otimes e_{\uptheta } } \right) = e_\text{r} \cdot \frac{\partial }{{\partial r}}\left( {\Gamma _{{\uptheta \uptheta }} e_{\uptheta } \otimes e_{\uptheta } } \right) = e_\text{r} \cdot \left[ {\frac{{\partial \Gamma _{{\uptheta \uptheta }} }}{{\partial r}}\left( {e_{\uptheta } \otimes e_{\uptheta } } \right) + \Gamma _{{\uptheta \uptheta }} \left( {\frac{{\partial e_{\uptheta } }}{{\partial r}} \otimes e_{\uptheta } } \right) + \Gamma _{{\uptheta \uptheta }} \left( {e_{\theta } \otimes \frac{{\partial e_{\uptheta } }}{{\partial r}}} \right)} \right] = 0 \hfill \\ \left( {\because e_\text{r} \cdot \left( {e_{\uptheta } \otimes e_{\uptheta } } \right) = \frac{{\partial e_{\uptheta } }}{{\partial r}} = \frac{{\partial e_\text{r} }}{{\partial r}} = 0} \right) \hfill \\ \end{gathered}$$
$$\begin{aligned} a_{5} = & \left( {\frac{{e_{{\uptheta }} }}{r}\frac{\partial }{\partial \theta }} \right) \cdot \left( {\Gamma_{{{\text{rr}}}} e_{{\text{r}}} \otimes e_{{\text{r}}} } \right) = \frac{{e_{{\uptheta }} }}{r} \cdot \frac{\partial }{\partial \theta }\left( {\Gamma_{{{\text{rr}}}} e_{{\text{r}}} \otimes e_{{\text{r}}} } \right) = \frac{{e_{{\uptheta }} }}{r} \cdot \left[ {\frac{{\partial \Gamma_{{{\text{rr}}}} }}{\partial \theta }\left( {e_{{\text{r}}} \otimes e_{{\text{r}}} } \right) + \Gamma_{{{\text{rr}}}} \left( {\frac{{\partial e_{{\text{r}}} }}{\partial \theta } \otimes e_{{\text{r}}} } \right) + \Gamma_{{{\text{rr}}}} \left( {e_{{\text{r}}} \otimes \frac{{\partial e_{{\text{r}}} }}{\partial \theta }} \right)} \right] \\ = & \frac{{e_{\theta } }}{r} \cdot \left[ {\frac{{\partial \Gamma_{{{\text{rr}}}} }}{\partial \theta }\left( {e_{{\text{r}}} \otimes e_{{\text{r}}} } \right) + \Gamma_{{{\text{rr}}}} \left( {e_{{\uptheta }} \otimes e_{{\text{r}}} } \right) + \Gamma_{{{\text{rr}}}} \left( {e_{{\text{r}}} \otimes e_{{\uptheta }} } \right)} \right] \\ = & \frac{{\Gamma_{{{\text{rr}}}} }}{r}e_{r} \,\left( {\because \frac{{\partial e_{{\text{r}}} }}{\partial \theta } = e_{{\uptheta }} ;\,\,\,\,e_{{\uptheta }} \cdot \left( {e_{{\text{r}}} \otimes e_{{\text{r}}} } \right) = e_{{\uptheta }} \cdot \left( {e_{{\text{r}}} \otimes e_{{\uptheta }} } \right) = 0} \right) \\ \end{aligned}$$
$$\begin{aligned} a_{6} = & \left( {\frac{{e_{\uptheta } }}{r}\frac{\partial }{{\partial \theta }}} \right) \cdot \left( {\Gamma _{{\text{r}\uptheta }} e_\text{r} \otimes e_{\uptheta } } \right) = \frac{{e_{\uptheta } }}{\text{r}} \cdot \frac{\partial }{{\partial \theta }}\left( {\Gamma _{{\text{r}\uptheta }} e_\text{r} \otimes e_{\uptheta } } \right) = \frac{{e_{\uptheta } }}{\text{r}} \cdot \left[ {\frac{{\partial \Gamma _{{\text{r}\uptheta }} }}{{\partial \theta }}\left( {e_\text{r} \otimes e_{\uptheta } } \right) + \Gamma _{{\text{r}\uptheta }} \left( {\frac{{\partial e_\text{r} }}{{\partial \theta }} \otimes e_{\uptheta } } \right) + \Gamma _{{\text{r}\uptheta }} \left( {e_\text{r} \otimes \frac{{\partial e_{\uptheta } }}{{\partial \theta }}} \right)} \right] \\ = & \frac{{e_{\uptheta } }}{\text{r}} \cdot \left[ {\frac{{\partial \Gamma _{{\text{r}\uptheta }} }}{{\partial \theta }}\left( {e_\text{r} \otimes e_{\uptheta } } \right) + \Gamma _{{\text{r}\uptheta }} \left( {e_{\uptheta } \otimes e_{\uptheta } } \right) + \Gamma _{{\text{r}\uptheta }} \left( {e_\text{r} \otimes \left( { - e_\text{r} } \right)} \right)} \right] \\ = & \frac{{\Gamma _{{\text{r}\uptheta }} }}{\text{r}}e_{\uptheta } \\ \end{aligned}$$
$$\begin{aligned} a_{7} = & \left( {\frac{{e_{{\uptheta }} }}{r}\frac{\partial }{\partial \theta }} \right) \cdot \left( {\Gamma_{{{\uptheta \text{r}}}} e_{{\uptheta }} \otimes e_{{\text{r}}} } \right) = \frac{{e_{{\uptheta }} }}{r} \cdot \frac{\partial }{\partial \theta }\left( {\Gamma_{{{\uptheta \text{r}}}} e_{{\uptheta }} \otimes e_{{\text{r}}} } \right) = \frac{{e_{{\uptheta }} }}{r} \cdot \left[ {\frac{{\partial \Gamma_{{{\uptheta \text{r}}}} }}{\partial \theta }\left( {e_{{\uptheta }} \otimes e_{{\text{r}}} } \right) + \Gamma_{{{\uptheta \text{r}}}} \left( {\frac{{\partial e_{{\uptheta }} }}{\partial \theta } \otimes e_{{\text{r}}} } \right) + \Gamma_{{{\uptheta \text{r}}}} \left( {e_{{\uptheta }} \otimes \frac{{\partial e_{{\text{r}}} }}{\partial \theta }} \right)} \right] \\ = & \frac{{e_{{\uptheta }} }}{r} \cdot \left[ {\frac{{\partial \Gamma_{{{\uptheta \text{r}}}} }}{\partial \theta }\left( {e_{{\uptheta }} \otimes e_{{\text{r}}} } \right) + \Gamma_{{{\uptheta \text{r}}}} \left( { - e_{{\text{r}}} \otimes e_{{\text{r}}} } \right) + \Gamma_{{{\uptheta \text{r}}}} \left( {e_{{\uptheta }} \otimes e_{{\uptheta }} } \right)} \right] \\ = & \frac{1}{r}\frac{{\partial \Gamma_{{{\uptheta \text{r}}}} }}{\partial \theta }e_{{\text{r}}} + \frac{{\Gamma_{{{\uptheta \text{r}}}} }}{r}e_{{\uptheta }} \\ \end{aligned}$$
$$\begin{gathered} a_{8} = \left( {\frac{{e_{\uptheta } }}{r}\frac{\partial }{\partial \theta }} \right) \cdot \left( {\Gamma_{\uptheta \uptheta } e_{\uptheta } \otimes e_{\uptheta } } \right) = \frac{{e_{\uptheta } }}{\text{r}} \cdot \frac{\partial }{\partial \theta }\left( {\Gamma_{\uptheta \uptheta } e_{\uptheta } \otimes e_{\uptheta } } \right) = \frac{{e_{\uptheta } }}{\text{r}} \cdot \left[ {\frac{{\partial \Gamma_{\uptheta \uptheta } }}{\partial \theta }\left( {e_{\uptheta } \otimes e_{\uptheta } } \right) + \Gamma_{\uptheta \uptheta } \left( {\frac{{\partial e_{\uptheta } }}{\partial \theta } \otimes e_{\uptheta } } \right) + \Gamma_{\uptheta \uptheta } \left( {e_{\uptheta } \otimes \frac{{\partial e_{\uptheta } }}{\partial \theta }} \right)} \right] \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{e_{\uptheta } }}{\text{r}} \cdot \left[ {\frac{{\partial \Gamma_{\uptheta \uptheta } }}{\partial \theta }\left( {e_{\uptheta } \otimes e_{\uptheta } } \right) + \Gamma_{\uptheta \uptheta } \left( { - e_\text{r} \otimes e_{\uptheta } } \right) + \Gamma_{\uptheta \uptheta } \left( {e_{\uptheta } \otimes \left( { - e_\text{r} } \right)} \right)} \right] \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{1}{r}\frac{{\partial \Gamma_{\uptheta \uptheta } }}{\partial \theta }e_{\uptheta } - \frac{{\Gamma_{\uptheta \uptheta } }}{\text{r}}e_\text{r} \hfill \\ \end{gathered}$$

Thus,

$$\begin{gathered} \nabla \cdot \Gamma = a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{6} + a_{7} + a_{8} \hfill \\ \nabla \cdot \Gamma = \frac{{\partial \Gamma _\text{{rr}} }}{{\partial r}}e_\text{r} \, + \frac{{\partial \Gamma _{{\text{r}\uptheta }} }}{{\partial r}}e_{\uptheta } + 0 + 0 + \frac{{\Gamma _\text{{rr}} }}{r}e_\text{r} + \frac{{\Gamma _{{\text{r}\uptheta }} }}{\text{r}}e_{\uptheta } + \frac{1}{r}\frac{{\partial \Gamma _{{\uptheta\text{r}}} }}{{\partial \theta }}e_\text{r} + \frac{{\Gamma _{{\uptheta \text{r}}} }}{\text{r}}e_{\uptheta } + \frac{1}{r}\frac{{\partial \Gamma _{{\uptheta \uptheta }} }}{{\partial \theta }}e_{\uptheta } - \frac{{\Gamma _{{\uptheta \uptheta }} }}{r}e_\text{r} \hfill \\ \end{gathered}$$
$$\nabla \cdot \Gamma = \left( {\frac{{\partial \Gamma _\text{{rr}} }}{{\partial r}} + \frac{{\Gamma _\text{{rr}} }}{\text{r}} + \frac{1}{r}\frac{{\partial \Gamma _{{\uptheta \text{r}}} }}{{\partial \theta }} - \frac{{\Gamma _{{\uptheta \uptheta }} }}{\text{r}}} \right)e_\text{r} \, + \left( {\frac{{\partial \Gamma _{{\text{r}\uptheta }} }}{{\partial r}} + \frac{{\Gamma _{{\text{r}\uptheta }} }}{r} + \frac{{\Gamma _{{\uptheta \text{r}}} }}{\text{r}} + \frac{1}{r}\frac{{\partial \Gamma _{{\uptheta \uptheta }} }}{{\partial \theta }}} \right)e_{\uptheta }$$
$$\nabla \cdot \Gamma = \left( {\frac{1}{r}\frac{{\partial \left( {r\Gamma _\text{{rr}} } \right)}}{{\partial r}} + \frac{1}{r}\frac{{\partial \Gamma _{{\text{r}\uptheta }} }}{{\partial \theta }} - \frac{{\Gamma _{{\uptheta \uptheta }} }}{\text{r}}} \right)e_\text{r} \, + \left( {\frac{{\partial \Gamma _{{\text{r}\uptheta }} }}{{\partial r}} + \frac{1}{r}\frac{{\partial \Gamma _{{\uptheta \uptheta }} }}{{\partial \theta }} + 2\frac{{\Gamma _{{\text{r}\uptheta }} }}{\text{r}}} \right)e_{\uptheta } .$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumbinarasaiah, S., Raghunatha, K.R. & Preetham, M.P. Applications of Bernoulli wavelet collocation method in the analysis of Jeffery–Hamel flow and heat transfer in Eyring–Powell fluid. J Therm Anal Calorim 148, 1173–1189 (2023). https://doi.org/10.1007/s10973-022-11706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11706-9

Keywords

Navigation