Skip to main content
Log in

Electro-osmotic effect on the three-layer flow of Binary nanoliquid between two concentric cylinders

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The three-layer flow of an immiscible nanoliquid in composite annulus with an electro-kinetic effect is analyzed using Buongiorno’s model. This model helps in analyzing the impact of two major phenomena, namely thermophoresis and Brownian motion. In this model, an interfacial layer is formed between the liquids due to the immiscibility of the base liquids. The use of a multilayer model especially in cooling systems brings more applications in many industries such as nuclear, biomedical, and solar. Different from the earlier studies on multilayer channel flow, this paper explains the three-layer flow between two concentric cylinders in the presence of cross-diffusion which makes the work unique. Further, the middle region is assumed to be porous and heat source or sink is applied to the entire system. Also, the flux conservation condition for nanoparticle volume fraction is considered. The equations governing the problem are simplified and are solved using the differential transform method. The results indicate that the electroosmotic parameter enhances the velocity but reduces the electrostatic potential. Further, the diffusion ratio improves the temperature and decreases the solute concentration of the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(\bar{\psi }\) :

Electrostatic potentials

\(\delta\) :

Dimensionless internal heat source

\(\Gamma\) :

Non-dimensional pressure gradient

\(\psi\) :

Non-dimensional electrostatic potentials

\(\rho\) :

Density \((Kgm^{-3})\)

\(\sigma\) :

Porosity parameter

\(\theta\) :

Dimensionless temperature

\(\kappa\) :

Permeability of porous medium \((m^2)\)

\(\mu\) :

Dynamic viscosity \((Kgm^{-1}s^{-1})\)

\(\Phi\) :

Nanoparticle volume fraction

\(\phi\) :

Non-dimensional nanoparticle volume fraction

\(\lambda _{\text{c}}\) :

Modified mass Grashof number

\(\lambda _{\text{t}}\) :

Modified temperature Grashof number

C :

Solute concentration

\(C_{\text{{w}}_1}\), \(C_{\text{{w}}_2}\) :

Nanoparticle concentration at lower and upper wall

Cp :

Specific heat at constant pressure \((m^2s^{-2})\)

D :

Coefficient of mass diffusivity \((m^2s^{-1})\)

Ec :

Eckert number

g :

Gravitational acceleration \((ms^{-2})\)

\(Gr_{\text{c}}\) :

Local mass Grashof number

\(Gr_{\text{t}}\) :

Local temperature Grashof number

\(K_{\text{T}}\) :

Thermal diffusion ratio

P :

Pressure \((Kgm^{-1}s^{-2})\)

Pr :

Prandtl number

Re :

Reynolds number

S :

Non-dimensional solute concentration

T :

Temperature (K)

\(T_{\text{{w}}_1}\), \(T_{\text{{w}}_2}\) :

Temperature at lower and upper wall (K)

\(w_{\text{i}}\),:

Velocity component for r directions \((ms^{-1})\)

zr :

Cartesian coordinates (m)

k:

Thermal conductivity \((WK^{-1}m^{-1})\)

1:

Nanoliquid

2:

Hybrid nanoliquid

f :

Base liquid

i :

Region I,II and III

np :

Nanoparticle

References

  1. Keyhani M, Kulacki FA, Christensen RN. Free convection in a vertical annulus with constant heat flux on the inner wall. J Heat Transf. 1983. https://doi.org/10.1115/1.3245606

    Article  Google Scholar 

  2. Ball KS, Farouk B, Dixit VC. An experimental study of heat transfer in a vertical annulus with a rotating inner cylinder. Int J Heat Mass Transf. 1989;32:1517–27.

    Article  CAS  Google Scholar 

  3. Grassi W, Testi D, Saputelli M. EHD enhanced heat transfer in a vertical annulus. Int Commun Heat Mass Transf. 2005;32:748–57.

    Article  CAS  Google Scholar 

  4. Shahsavar A, Noori S, Toghraie D, Barnoon P. Free convection of non-Newtonian nanofluid flow inside an eccentric annulus from the point of view of first-law and second-law of thermodynamics. ZAMM J Appl Math Mech Z fur Angew Math und Mech. 2021;101:e202000266.

    Google Scholar 

  5. Shahsavar A, Rashidi M, Yıldız Ç, Arıcı M. Natural convection and entropy generation of Ag-water nanofluid in a finned horizontal annulus: A particular focus on the impact of fin numbers. Int Commun Heat Mass Transf. 2021;125:105349.

    Article  CAS  Google Scholar 

  6. Miles A, Bessaïh R. Heat transfer and entropy generation analysis of three-dimensional nanofluids flow in a cylindrical annulus filled with porous media. Int Commun Heat Mass Transf. 2021;124:105240.

    Article  CAS  Google Scholar 

  7. Mirzaie M, Lakzian E. Natural convection of nanofluid-filled annulus with cooled and heated sources and rotating cylinder in the water near the density inversion point. Eur Phys J Plus. 2021;136:1–20.

    Article  Google Scholar 

  8. Aly AM, Alsedais N. Magnetic impact on heat and mass transfer utilizing nonofluid in an annulus between a superellipse obstacle and a cavity with periodic side-wall temperature and concentration. Commun Theor Phys. 2021;73:115001.

    Article  CAS  Google Scholar 

  9. Abbas Z, Hasnain J. Two-phase magnetoconvection flow of magnetite (Fe3O4) nanoparticles in a horizontal composite porous annulus. Result Phys. 2017;7:574–80.

    Article  Google Scholar 

  10. Vajravelu K, Arunachalam PV, Sreenadh S. Unsteady flow of two immiscible conducting fluids between two permeable beds. J Math Anal Appl. 1995;196:1105–16.

    Article  Google Scholar 

  11. Chamkha AJ. Flow of two-immiscible fluids in porous and nonporous channels. J Fluid Eng. 2000;122:117–24.

    Article  Google Scholar 

  12. Malashetty MS, Umavathi JC, Prathap Kumar J. Two fluid flow and heat transfer in an inclined channel containing porous and fluid layer. Heat Mass Transf. 2004;40:871–6.

    Article  Google Scholar 

  13. Allan FM, Hajji MA, Anwar MN. The characteristics of fluid flow through multilayer porous media. J Appl Mech. 2009. https://doi.org/10.1115/1.2998483.

    Article  Google Scholar 

  14. Farooq U, Zhi-Liang L. Nonlinear heat transfer in a two-layer flow with nanofluids by OHAM. J Heat Transf. 2014. https://doi.org/10.1115/1.4025432.

    Article  Google Scholar 

  15. Lu DC, Farooq U, Hayat T, Rashidi MM, Ramzan M. Computational analysis of three layer fluid model including a nanomaterial layer. Int J Heat Mass Transf. 2018;122:222–8.

    Article  CAS  Google Scholar 

  16. Rajeev A, Mahanthesh B. Multilayer flow and heat transport of nanoliquids with nonlinear Boussinesq approximation and viscous heating using differential transform method. Heat Transf. 2021;50:4309–27.

    Article  Google Scholar 

  17. Manjunatha S, Puneeth V, Anandika R, Gireesha BJ. Analysis of multilayer convective flow of a hybrid nanofluid in porous medium sandwiched between the layers of nanofluid. Heat Transf. 2021;50:8598–616.

    Article  Google Scholar 

  18. Anandika R, Puneeth V, Manjunatha S, Shehzad SA, Arshad M. Exploration of Thermophoresis and Brownian motion effect on the bio-convective flow of Newtonian fluid conveying tiny particles: aspects of multi-layer model. In: Proceedings of the institution of mechanical engineers, part C: journal of mechanical engineering science. 2022. p. 09544062221098537.

  19. Anandika R, Puneeth V, Manjunatha S, Chamkha AJ. Thermal optimisation through multilayer convective flow of CuO-MWCNT hybrid nanofluid in a composite porous annulus. Int J Ambient Energy. 2022. https://doi.org/10.1080/01430750.2021.2023044.

    Article  Google Scholar 

  20. Niazi MD, Xu H. Modelling two-layer nanofluid flow in a micro-channel with electro-osmotic effects by means of Buongiorno’s mode. Appl Math Mech. 2022;41:83–104.

    Article  Google Scholar 

  21. Mala GM, Li D, Werner C, Jacobasch HJ, Ning YB. Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects. Int J Heat Fluid Flow. 1997;18:489–96.

    Article  CAS  Google Scholar 

  22. Kang Y, Yang C, Huang X. Electroosmotic flow in a capillary annulus with high zeta potentials. J Colloid Interface Sci. 2002;253:285–94.

    Article  CAS  Google Scholar 

  23. Gao Y, Wong TN, Yang C, Ooi KT. Two-fluid electroosmotic flow in microchannels. J Colloid Interface Sci. 2005;284:306–14.

    Article  CAS  Google Scholar 

  24. Ren CL, Li D. Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels. Anal Chim Acta. 2005;531:15–23.

    Article  CAS  Google Scholar 

  25. Chakraborty S, Roy S. Thermally developing electroosmotic transport of nanofluids in microchannels. Microfluid Nanofluid. 2008;4:501–11.

    Article  CAS  Google Scholar 

  26. You XY, Guo LX. Analysis of EDL effects on the flow and flow stability in microchannels. J Hydrodyn. 2010;22:725–31.

    Article  Google Scholar 

  27. Kotnurkar AS, Talawar VT. Impact of electroosmosis and joule heating effects on peristaltic transport with thermal radiation of hyperbolic tangent fluid through a porous media in an endoscope. Partial Differ Equ Appl Math. 2022;5:100340.

    Article  Google Scholar 

  28. Farooq M, Khan MI, Waqas M, Hayat T, Alsaedi A, Khan MI. MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. J Mol Liq. 2016;221:1097–103.

    Article  CAS  Google Scholar 

  29. Hayat T, Khan MI, Waqas M, Alsaedi A, Farooq M. Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon-water nanofluid. Comput Method Appl Mech Eng. 2017;315:1011–24.

    Article  Google Scholar 

  30. Wang Y, Qi C, Ding Z, Tu J, Zhao R. Numerical simulation of flow and heat transfer characteristics of nanofluids in built-in porous twisted tape tube. Powder Technol. 2021;392:570–86.

    Article  CAS  Google Scholar 

  31. Choi TJ, Park MS, Kim SH, Jang SP. Experimental study on the effect of nanoparticle migration on the convective heat transfer coefficient of EG/water-based Al2O3 nanofluids. Int J Heat Mass Transf. 2021;169:120903.

    Article  CAS  Google Scholar 

  32. Banisharif A, Estellé P, Rashidi A, Van Vaerenbergh S, Aghajani M. Heat transfer properties of metal, metal oxides, and carbon water-based nanofluids in the ethanol condensation process. Colloid Surf A Physicochem Eng Asp. 2021;622:126720.

    Article  CAS  Google Scholar 

  33. Rikitu BH, Makinde OD, Enyadene LG. Unsteady mixed convection of a radiating and reacting nanofluid with variable properties in a porous medium microchannel. Arch Appl Mech. 2022;92:99–119.

    Article  Google Scholar 

  34. Kim J, Choi CK, Kang YT, Kim MG. Effects of thermodiffusion and nanoparticles on convective instabilities in binary nanofluids. Nanoscale Microscale Thermophys Eng. 2006;10(1):29–39.

    Article  CAS  Google Scholar 

  35. Kuznetsov AV, Nield D. Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transp Porous Media. 2010;81:409–22.

    Article  Google Scholar 

  36. Zeng J, Xuan Y. Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Appl Energy. 2018;212:809–19.

    Article  CAS  Google Scholar 

  37. Lee JK, Koo J, Hong H, Kang YT. The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids. Int J Refrig. 2010;33:269–75.

    Article  CAS  Google Scholar 

  38. Zahmatkesh I, Habibi Shandiz MR. MHD double-diffusive mixed convection of binary nanofluids through a vertical porous annulus considering Buongiorno’s two-phase model. J Therm Anal Calorim. 2022;147:1793–807.

    Article  CAS  Google Scholar 

  39. Alzate PP, Salazar JJ, Varela CA. The Zhou’s method for solving the euler equidimensional equation. Appl Math. 2016;7:2165.

    Article  Google Scholar 

  40. Chen CL, Liu YC. Solution of two-point boundary-value problems using the differential transformation method. J Optim Theory Appl. 1998;99:23–35.

    Article  Google Scholar 

  41. Odibat ZM. Differential transform method for solving Volterra integral equation with separable kernels. Math Comput Model. 2008;48:1144–9.

    Article  Google Scholar 

  42. Pohar A, Lakner M, Plazl I. Parallel flow of immiscible liquids in a microreactor: modeling and experimental study. Microfluid Nanofluid. 2012;12(1):307–16.

    Article  CAS  Google Scholar 

  43. Asthana A, Zinovik I, Weinmueller C, Poulikakos D. Significant Nusselt number increase in microchannels with a segmented flow of two immiscible liquids: an experimental study. Int J Heat Mass Transf. 2011;54(7–8):1456–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Manjunatha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeev, A., Manjunatha, S. & Vishalakshi, C.S. Electro-osmotic effect on the three-layer flow of Binary nanoliquid between two concentric cylinders. J Therm Anal Calorim 147, 15069–15081 (2022). https://doi.org/10.1007/s10973-022-11684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11684-y

Keywords

Navigation