Skip to main content
Log in

The key role of the A-site composition of oxy-hydroxyapatites in high-temperature solid–gas exchange reactions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The manufacture of carbonated hydroxyapatite-based bioceramics with control of the composition and microstructure remains challenging and reveals our lack of knowledge regarding the thermal behavior of such materials, particularly at high temperatures under reactive atmospheres. This work lays a foundation for addressing this issue by investigating the solid–gas exchange reactions occurring between oxy-hydroxyapatites (OxHA) and a CO2-rich atmosphere during thermal treatment. Accordingly, OxHA reference powders with different oxygen contents (0 ≤ x ≤ 0.79) were produced, extensively characterized and heat-treated under a CO2-rich atmosphere at 950 °C for 5 h. The results of physicochemical, thermal and microstructural analyses showed that the A-site composition of OxHA controls the exchange reactions: a high initial OH content induced concomitant A-site dehydration and carbonation; conversely, a high OH vacancy content induced A-site hydration as a first step. Furthermore, the specific surface area significantly influenced the solid–gas exchange reactions by controlling their kinetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci-Mater M. 2014;25(10):2445–61. https://doi.org/10.1007/s10856-014-5240-2.

    Article  CAS  Google Scholar 

  2. Marchat D, Champion E. Chapter 8: ceramic devices for bone replacement: mechanical and clinical issues. In: Palmero P, Barra ED, Cambier F, editors. Advances in ceramic biomaterials medical and commercial requirements. Woodhead publishing, Elsevier; 2017. p. 279–311. https://doi.org/10.1016/B978-0-08-100881-2.00008-7.

    Chapter  Google Scholar 

  3. Porter A, Patel N, Brooks R, Best S, Rushton N, Bonfield W. Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants. J Mater Sci Mater Med. 2005;16(10):899–907. https://doi.org/10.1007/s10856-005-4424-1.

    Article  CAS  PubMed  Google Scholar 

  4. Spence G, Patel N, Brooks R, Bonfield W, Rushton N. Osteoclastogenesis on hydroxyapatite ceramics: the effect of carbonate substitution. J Biomed Mater Res A. 2010;92(4):1292–300. https://doi.org/10.1002/jbm.a.32373.

    Article  CAS  PubMed  Google Scholar 

  5. Barralet J, Akao M, Aoki H, Aoki H. Dissolution of dense carbonate apatite subcutaneously implanted in Wistar rats. J Biomed Mater Res. 2000;49(2):176–82. https://doi.org/10.1002/(sici)1097-4636(200002)49:2%3C176::aid-jbm4%3E3.0.co;2-8.

    Article  CAS  PubMed  Google Scholar 

  6. Detsch R, Mayr H, Ziegler G. Formation of osteoclast-like cells on HA and TCP ceramics. Acta Biomater. 2008;4(1):139–48. https://doi.org/10.1016/j.actbio.2007.03.014.

    Article  CAS  PubMed  Google Scholar 

  7. Calori GM, Mazza E, Colombo M, Ripamonti C. The use of bone-graft substitutes in large bone defects: Any specific needs? Injury. 2011;42:S56–63. https://doi.org/10.1016/j.injury.2011.06.011.

    Article  PubMed  Google Scholar 

  8. Collins KL, Gates EM, Gilchrist CL, Hoffman BD. Chapter 1: bio-instructive cues in scaffolds for musculoskeletal tissue engineering and regenerative medicine. In: Brown JL, Kumbar SG, Banik BL, editors. Bio-instructive scaffolds for musculoskeletal tissue engineering and regenerative medicine. Academic Press; 2017. p. 3–35. https://doi.org/10.1016/B978-0-12-803394-4.00001-X.

    Chapter  Google Scholar 

  9. Rey C, Combes C, Drouet C, Glimcher MJ. Bone mineral: update on chemical composition and structure. Osteoporosis Int. 2009;20(6):1013–21. https://doi.org/10.1007/s00198-009-0860-y.

    Article  CAS  Google Scholar 

  10. Cazalbou S, Combes C, Eichert D, Rey C. Adaptative physico-chemistry of bio-related calcium phosphates. J Mater Chem. 2004;14(14):2148–53. https://doi.org/10.1039/B401318B.

    Article  CAS  Google Scholar 

  11. Melville AJ, Harrison J, Gross KA, Forsythe JS, Trounson AO, Mollard R. Mouse embryonic stem cell colonisation of carbonated apatite surfaces. Biomaterials. 2006;27(4):615–22. https://doi.org/10.1016/j.biomaterials.2005.06.028.

    Article  CAS  PubMed  Google Scholar 

  12. Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: Materials for the future? Mater Today. 2016;19(2):69–87. https://doi.org/10.1016/j.mattod.2015.10.008.

    Article  CAS  Google Scholar 

  13. Paré A, Charbonnier B, Tournier P, Vignes C, Veziers J, Lesoeur J, et al. Tailored three-dimensionally printed triply periodic calcium phosphate implants: a preclinical study for craniofacial bone repair. ACS Biomater Sci Eng. 2020;6(1):553–63. https://doi.org/10.1021/acsbiomaterials.9b01241.

    Article  CAS  PubMed  Google Scholar 

  14. Barrere F, van Blitterswijk CA, de Groot K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed. 2006;1(3):317–32.

    CAS  Google Scholar 

  15. Spence G, Phillips S, Campion C, Brooks R, Rushton N. Bone formation in a carbonate-substituted hydroxyapatite implant is inhibited by zoledronate: the importance of bioresorption to osteoconduction. J Bone Joint Surg Br. 2008;90(12):1635–40. https://doi.org/10.1302/0301-620X.90B12.20931.

    Article  CAS  PubMed  Google Scholar 

  16. Nelson DG. The influence of carbonate on the atomic structure and reactivity of hydroxyapatite. J Dent Res. 1981;60 Spec No C:1621–9. https://doi.org/10.1177/0022034581060003s1201.

    Article  CAS  PubMed  Google Scholar 

  17. Rupani A, Hidalgo-Bastida LA, Rutten F, Dent A, Turner I, Cartmell S. Osteoblast activity on carbonated hydroxyapatite. J Biomed Mater Res Part A. 2012;100A(4):1089–96. https://doi.org/10.1002/jbm.a.34037.

    Article  CAS  Google Scholar 

  18. Pieters IY, Van den Vreken NM, Declercq HA, Cornelissen MJ, Verbeeck RM. Carbonated apatites obtained by the hydrolysis of monetite: influence of carbonate content on adhesion and proliferation of MC3T3-E1 osteoblastic cells. Acta Biomater. 2010;6(4):1561–8. https://doi.org/10.1016/j.actbio.2009.11.002.

    Article  CAS  PubMed  Google Scholar 

  19. Bonel G. Contribution à l’étude de la carbonatation des apatites. Ann Chim. 1972;7:65–88.

    CAS  Google Scholar 

  20. Fleet ME. Carbonated hydroxyapatite: materials, synthesis, and applications. 1st ed. Jenny Stanford Publishing; 2015.

    Google Scholar 

  21. Redey SA, Nardin M, Bernache-Assollant D, Rey C, Delannoy P, Sedel L, et al. Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy. J Biomed Mater Res. 2000;50(3):353–64. https://doi.org/10.1002/(sici)1097-4636(20000605)50:3%3C353::aid-jbm9%3E3.0.co;2-c.

    Article  CAS  PubMed  Google Scholar 

  22. Li B, Liao X, Zheng L, He H, Wang H, Fan H, et al. Preparation and cellular response of porous A-type carbonated hydroxyapatite nanoceramics. Mater Sci Eng C. 2012;32(4):929–36. https://doi.org/10.1016/j.msec.2012.02.014.

    Article  CAS  Google Scholar 

  23. Labarthe J-C, Bonnel G, Montel G. Sur la structure et les propriétés des apatites carbonatées de type B phospho-calcique. Ann Chim. 1973;8:289–301.

    CAS  Google Scholar 

  24. Douard N, Leclerc L, Sarry G, Bin V, Marchat D, Forest V, et al. Impact of the chemical composition of poly-substituted hydroxyapatite particles on the in vitro pro-inflammatory response of macrophages. Biomed Microdevices. 2016;18(2):9. https://doi.org/10.1007/s10544-016-0056-0.

    Article  CAS  Google Scholar 

  25. Boyer A, Marchat D, Bernache-Assollant D. Synthesis and characterization of Cx-Siy-HA for bone tissue engineering application. Key Eng Mat. 2013;529–530:100–4. https://doi.org/10.4028/www.scientific.net/KEM.529-530.100.

    Article  CAS  Google Scholar 

  26. Vignoles M, Bonel G, Holcomb DW, Young RA. Influence of preparation conditions on the composition of type-B carbonated hydroxyapatite and on the localization of carbonate ions. Calcified Tissue Inter. 1988;43(1):33–40. https://doi.org/10.1007/BF02555165.

    Article  CAS  Google Scholar 

  27. Lafon JP, Champion E, Bernache-Assollant D, Gibert R, Danna AM. Thermal decomposition of carbonated calcium phosphate apatites. J Therm Anal Calorim. 2003;72(3):1127–34. https://doi.org/10.1023/A:1025036214044.

    Article  CAS  Google Scholar 

  28. Lafon JP, Champion E, Bernache-Assollant D. Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)6–x(CO3)x(OH)2–x-2y(CO3)y ceramics with controlled composition. J Eur Ceram Soc. 2008;28(1):139–47. https://doi.org/10.1016/j.jeurceramsoc.2007.06.009.

    Article  CAS  Google Scholar 

  29. Rustom LE, Boudou T, Lou S, Pignot-Paintrand I, Nemke BW, Lu Y, et al. Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds. Acta Biomater. 2016;44:144–54. https://doi.org/10.1016/j.actbio.2016.08.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Davison NL, Luo X, Schoenmaker T, Everts V, Yuan H, Barrère-de Groot F, et al. Submicron-scale surface architecture of tricalcium phosphate directs osteogenesis in vitro and in vivo. Eur Cell Mater. 2014;27:281–97. https://doi.org/10.22203/ecm.v027a20.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Barbieri D, ten Hoopen H, de Bruijn JD, van Blitterswijk CA, Yuan H. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture. J Biomed Mater Res A. 2015;103(3):1188–99. https://doi.org/10.1002/jbm.a.35272.

    Article  CAS  PubMed  Google Scholar 

  32. Bouet G, Marchat D, Cruel M, Malaval L, Vico L. In vitro three-dimensional bone tissue models: from cells to controlled and dynamic environment. Tissue Eng Part B Rev. 2015;21(1):133–56. https://doi.org/10.1089/ten.teb.2013.0682.

    Article  PubMed  Google Scholar 

  33. Murphy WL, McDevitt TC, Engler AJ. Materials as stem cell regulators. Nat Mater. 2014;13(6):547–57. https://doi.org/10.1038/nmat3937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davison NL, Su J, Yuan H, van den Beucken JJ, de Bruijn JD, Barrère-de GF. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs. Eur Cell Mater. 2015;29:314–29. https://doi.org/10.22203/ecm.v029a24.

    Article  CAS  PubMed  Google Scholar 

  35. Trombe JC, Montel G. Some features of the incorporation of oxygen in different oxidation states in the apatitic lattice—II On the synthesis and properties of calcium and strontium peroxiapatites. J Inorg Nucl Chem. 1978;40(1):23–6. https://doi.org/10.1016/0022-1902(78)80299-1.

    Article  CAS  Google Scholar 

  36. Seuter AMJH. Existence region of calcium hydroxyapatite and the equilibrium with coexisting phases at elevated temperatures. In: Anderson JSRM, Stone FS, editors. Reactivity of solids. London: Chapman et Hall; 1972.

    Google Scholar 

  37. Raynaud S, Champion E, Bernache-Assollant D. Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering. Biomaterials. 2002;23(4):1073–80. https://doi.org/10.1016/S0142-9612(01)00219-8.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou J, Zhang X, Chen J, Zeng S, De Groot K. High temperature characteristics of synthetic hydroxyapatite. J Mater Sci Mater Med. 1993;4(1):83–5. https://doi.org/10.1007/BF00122983.

    Article  CAS  Google Scholar 

  39. Locardi B, Pazzaglia UE, Gabbi C, Profilo B. Thermal behaviour of hydroxyapatite intended for medical applications. Biomaterials. 1993;14(6):437–41. https://doi.org/10.1016/0142-9612(93)90146-s.

    Article  CAS  PubMed  Google Scholar 

  40. Van Landuyt P, Li F, Keustermans JP, Streydio JM, Delannay F, Munting E. The influence of high sintering temperatures on the mechanical properties of hydroxylapatite. J Mater Sci Mater Med. 1995;6(1):8–13. https://doi.org/10.1007/BF00121239.

    Article  Google Scholar 

  41. Adolfsson E, Nygren M, Hermansson L. Decomposition mechanisms in aluminum oxide-apatite systems. J Am Ceram Soc. 1999;82(10):2909–12. https://doi.org/10.1111/j.1151-2916.1999.tb02176.x.

    Article  CAS  Google Scholar 

  42. Riboud PV. Composition et stabilité des phases à structure d’apatite dans le système CaO-P2O5-oxyde de fer-H2O à haute température. Ann Chim. 1973;8:381–90.

    CAS  Google Scholar 

  43. Alberius-Henning P, Adolfsson E, Grins J, Fitch A. Triclinic oxy-hydroxyapatite. J Mater Sci. 2001;36(3):663–8. https://doi.org/10.1023/A:1004876622105.

    Article  CAS  Google Scholar 

  44. Yoder CH, Pasteris JD, Worcester KN, Schermerhorn DV. Structural water in carbonated hydroxylapatite and fluorapatite: confirmation by solid state 2H NMR. Calcified Tissue Int. 2012;90(1):60–7. https://doi.org/10.1007/s00223-011-9542-9.

    Article  CAS  Google Scholar 

  45. Wang T, Dorner-Reisel A, Müller E. Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder. J Eur Ceram Soc. 2004;24(4):693–8. https://doi.org/10.1016/S0955-2219(03)00248-6.

    Article  CAS  Google Scholar 

  46. Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ. The carbonate environment in bone mineral: a resolution-enhanced Fourier Transform Infrared Spectroscopy study. Calcified Tissue Int. 1989;45(3):157–64. https://doi.org/10.1007/BF02556059.

    Article  CAS  Google Scholar 

  47. Charbonnier B. Développement de procédés de mise en forme et de caractérisation pour l’élaboration de biocéramiques en apatites phosphocalcique carbonatées. Univ Lyon; 2016.

    Google Scholar 

  48. Liao CJ, Lin FH, Chen KS, Sun JS. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials. 1999;20(19):1807–13. https://doi.org/10.1016/S0142-9612(99)00076-9.

    Article  CAS  PubMed  Google Scholar 

  49. Wilson EE, Awonusi A, Morris MD, Kohn DH, Tecklenburg MMJ, Beck LW. Three structural roles for water in bone observed by solid-state NMR. Biophys J. 2006;90(10):3722–31. https://doi.org/10.1529/biophysj.105.070243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pajchel L, Kolodziejski W. Solid-state MAS NMR, TEM, and TGA studies of structural hydroxyl groups and water in nanocrystalline apatites prepared by dry milling. J Nanopart Res. 2013;15(8):1868. https://doi.org/10.1007/s11051-013-1868-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nowicki DA, Skakle JMS, Gibson IR. Faster synthesis of A-type carbonated hydroxyapatite powders prepared by high-temperature reaction. Adv Powder Technol. 2020;31(8):3318–27. https://doi.org/10.1016/j.apt.2020.06.022.

    Article  CAS  Google Scholar 

  52. LeGeros RZ, Trautz OR, Klein E, LeGeros JP. Two types of carbonate substitution in the apatite structure. Cell Mol Life Sci. 1969;25(1):5–7. https://doi.org/10.1007/bf01903856.

    Article  CAS  Google Scholar 

  53. Driessens FCM, Verbeeck RMH, Heijligers HJM. Some physical properties of Na- and CO3-containing apatites synthesized at high temperatures. Inorg Chim Acta. 1983;80:19–23. https://doi.org/10.1016/S0020-1693(00)91256-8.

    Article  CAS  Google Scholar 

  54. Barralet JE, Fleming GJP, Campion C, Harris JJ, Wright AJ. Formation of translucent hydroxyapatite ceramics by sintering in carbon dioxide atmospheres. J Mater Sci. 2003;38(19):3979–93. https://doi.org/10.1023/A:1026258515285.

    Article  CAS  Google Scholar 

  55. Jebri S, Khattech I, Jemal M. Standard enthalpy, entropy and Gibbs free energy of formation of «A» type carbonate phosphocalcium hydroxyapatites. J Chem Thermodyn. 2017. https://doi.org/10.1016/j.jct.2016.10.035.

    Article  Google Scholar 

  56. Vieillard P, Tardy Y. Thermochemical Properties of Phosphates. In: Nriagu JO, Moore PB, editors. Phosphate minerals. Berlin: Springer; 1984. p. 171–98. https://doi.org/10.1007/978-3-642-61736-2_4.

    Chapter  Google Scholar 

Download references

Acknowledgements

We acknowledge Coralie Laurent from Mines Saint Etienne and Philipe Steyer and Annie Malchère from INSA Lyon for technical help.

Funding

This study was funded by the Auvergne-Rhone Alpes region (ARC2 program, PhD fellowship to SG).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SG, ND and DM. The first draft of the manuscript was written by SG and DM, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nathalie Douard.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillou, S., Douard, N., Tadier, S. et al. The key role of the A-site composition of oxy-hydroxyapatites in high-temperature solid–gas exchange reactions. J Therm Anal Calorim 147, 13135–13150 (2022). https://doi.org/10.1007/s10973-022-11512-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11512-3

Keywords

Navigation