Skip to main content
Log in

Water resistance, flame retardancy, and thermal properties of hydrophobic polypropylene/bamboo fiber composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Melamine–formaldehyde resin-coated bamboo fiber (MFBF) and ammonium polyphosphate (MFAPP) were prepared, and then flame-retardant polypropylene (PP)/bamboo fiber composites based on MFBF/MFAPP were obtained by melt blending. The water resistance, flame retardant, and thermal properties of the composites were studied. The results show that MFBF and MFAPP have excellent water resistance with the water contact angles 130.85° and 119.78°, respectively. Compared with pure PP, the limit oxygen index (LOI) of the prepared composite increased from 18.5 to 25.5% with the UL-94V-0 rating. The peak heat release rate of the composite decreased from 1011.8 to 344.3 kW·m−2 and the total heat release decreased from 100.6 to 58.8 MJ·m−2. Meanwhile, the total smoke release decreased from 1453.3 to 922.0 m2·m−2. After soaking in 70 °C water for 36 h, the composite still reached the V-0 rating in UL-94 test, demonstrating a good water resistance. This work provides an effective method to improve the water resistance and flame retardancy of PP/bamboo fiber composites.

Graphical abstract

Melamine–formaldehyde resin-coated bamboo fibers (MFBF) and ammonium polyphosphate (MFAPP) were prepared, then flame-retardant PP/BF composites were obtained based on MFBF/MFAPP. The results show that prepared composite exhibited excellent water resistance and flame-retardant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nie S, Liu X, Wu K, Dai G, Hu Y. Intumescent flame retardation of polypropylene/bamboo fiber semi-biocomposites. J Therm Anal Calorim. 2013;111(1):425–30. https://doi.org/10.1007/s10973-012-2422-3.

    Article  CAS  Google Scholar 

  2. Li J, Lai X, Li H, Zeng X, Liu Y, Zeng Y, et al. Functionalized ZrP nanosheet with free-radical quenching capability and its synergism in intumescent flame-retardant polypropylene. Polym Adv Technol. 2020;31(3):602–15. https://doi.org/10.1002/pat.4801.

    Article  CAS  Google Scholar 

  3. Kim HS, Kim HJ, Lee JW, Choi IG. Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil. Polym Degrad Stab. 2006;91(5):1117–27.

    Article  CAS  Google Scholar 

  4. Bazan P, Salasi K, Kuciel S. Flame retardant polypropylene reinforced with natural additives. Ind Crops Prod. 2021;164:113356. https://doi.org/10.1016/j.indcrop.2021.113356.

    Article  CAS  Google Scholar 

  5. Corona A, Madsen B, Hauschild MZ, Birkved M. Natural fibre selection for composite eco-design. CIRP Ann Manuf Technol. 2016;65(1):13–6. https://doi.org/10.1016/j.cirp.2016.04.032.

    Article  Google Scholar 

  6. Khan T, Sultan MTBH, Ariffin AH. The challenges of natural fiber in manufacturing, material selection, and technology application: A review. J Reinf Plast Compos. 2018;37(11):770–9. https://doi.org/10.1177/0731684418756762.

    Article  CAS  Google Scholar 

  7. Wu H, Xu D, Zhou Y, Guo J, He W, He Y, et al. The improved mechanical and thermal properties of hemp fibers reinforced polypropylene composites with dodecyl bromide modification. Fibers Polym. 2021;22(10):2869–77. https://doi.org/10.1007/s12221-021-0127-6.

    Article  CAS  Google Scholar 

  8. Du S, Lin X, Jian R, Deng C, Wang Y. Flame-retardant wrapped ramie fibers towards suppressing “Candlewick Effect” of polypropylene/ramie fiber composites. Chin J Polym Sci. 2015;33(1):84–94. https://doi.org/10.1007/s10118-015-1560-z.

    Article  CAS  Google Scholar 

  9. El-sabbagh A, Steuernagel L, Ziegmann G. Low combustible polypropylene/flax/magnesium hydroxide composites: mechanical, flame retardation characterization and recycling effect. J Reinf Plast Compos. 2013;32(14):1030–43. https://doi.org/10.1177/0731684413480993.

    Article  CAS  Google Scholar 

  10. Agarwal J, Mohanty S, Nayak SK. Polypropylene hybrid composites: Effect of reinforcement of sisal and carbon fibre on mechanical, thermal and morphological properties. J Polym Eng. 2021;41(6):431–41. https://doi.org/10.1515/polyeng-2019-0355.

    Article  CAS  Google Scholar 

  11. Shi Y-C, Guan J-P, Wu J-N, Yang Y-R, Yang Y-R, Lv H-X, et al. Spray-free polypropylene composites reinforced by coupling agent treated jute fiber. Polym Compos. 2021;42(10):5455–64. https://doi.org/10.1002/pc.26237.

    Article  CAS  Google Scholar 

  12. Belgacem C, Serra-Parareda F, Tarres Q, Mutje P, Delgado-Aguilar M, Boufi S. The integral utilization of date palm waste to produce plastic composites. Polymers. 2021;13(14):2335. https://doi.org/10.3390/polym13142335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khalil HPSA, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS. Bamboo fibre reinforced biocomposites: a review. Mater Des. 2012;42:353–68. https://doi.org/10.1016/j.matdes.2012.06.015.

    Article  CAS  Google Scholar 

  14. Guo J, Cao M, Ren W, Wang H, Yu Y. Mechanical, dynamic mechanical and thermal properties of TiO2 nanoparticles treatment bamboo fiber-reinforced polypropylene composites. J Mater Sci. 2021;56(22):12643–59. https://doi.org/10.1007/s10853-021-06100-z.

    Article  CAS  Google Scholar 

  15. Wang C, Cai L, Shi SQ, Wang G, Cheng H, Zhang S. Thermal and flammable properties of bamboo pulp fiber/high-density polyethylene composites: Influence of preparation technology, nano calcium carbonate and fiber content. Renewable Energy. 2019;134:436–45. https://doi.org/10.1016/j.renene.2018.09.051.

    Article  CAS  Google Scholar 

  16. Pei P, Xiong H, Cai J, Liu C, Zia-ud D, Yu Y. Enhanced the weatherability of bamboo fiber-based outdoor building decoration materials by rutile nano-TiO2. Constr Build Mater. 2016;114:307–16. https://doi.org/10.1016/j.conbuildmat.2016.03.166.

    Article  CAS  Google Scholar 

  17. Chaudhary V, Ahmad F. A review on plant fiber reinforced thermoset polymers for structural and frictional composites. Polym Test. 2020;91:106792. https://doi.org/10.1016/j.poiymertesting.2020.106792.

    Article  CAS  Google Scholar 

  18. Fang L, Lu X, Zeng J, Chen Y, Tang Q. Investigation of the flame-retardant and mechanical properties of bamboo fiber-reinforced polypropylene composites with melamine pyrophosphate and aluminum hypophosphite addition. Materials. 2020;13(2):0479. https://doi.org/10.3390/ma13020479.

    Article  CAS  Google Scholar 

  19. Kumar N, Mireja S, Khandelwal V, Arun B, Manik G. Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: a strength analysis and morphological study. Compos Part B Eng. 2017;109:277–85. https://doi.org/10.1016/j.compositesb.2016.10.052.

    Article  CAS  Google Scholar 

  20. Rahman MR, Hamdan S, Hashim DMA, Islam MS, Takagi H. Bamboo fiber polypropylene composites: effect of fiber treatment and nano clay on mechanical and thermal properties. J Vinyl Add Tech. 2015;21(4):253–8. https://doi.org/10.1002/vnl.21407.

    Article  CAS  Google Scholar 

  21. Nowaki A, Ouchi T, Matsumoto K, Tsukegi T, Nishida H. Effect of expandable graphite on flame retardation of bamboo fiber reinforced polypropylene composite. Kobunshi Ronbunshu. 2018;75(2):232–9. https://doi.org/10.1295/koron.2017-0081.

    Article  CAS  Google Scholar 

  22. Xiong ZQ, Zhang Y, Du XY, Song PA, Fang ZP. Green and scalable fabrication of core-shell biobased flame retardants for reducing flammability of polylactic acid. ACS Sustain Chem Eng. 2019;7(9):8954–63. https://doi.org/10.1021/acssuschemeng.9b01016.

    Article  CAS  Google Scholar 

  23. Sun YQ, Shuai S, Lei C, Liu LN, Song PA, Wei L, et al. Flame retardant and mechanically tough poly(lactic acid) biocomposites via combining ammonia polyphosphate and polyethylene glycol. Compos Commun. 2017;6:1–5. https://doi.org/10.1016/j.coco.2017.07.005.

    Article  CAS  Google Scholar 

  24. Yu Y, Xi L, Yao M, Liu L, Zhang Y, Huo S, et al. Governing effects of melt viscosity on fire performances of polylactide and its fire-retardant systems. iScience. 2022;25(3):103950. https://doi.org/10.1016/j.isci.2022.103950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bi X, Di H, Liu J, Meng Y, Song Y, Meng W, et al. A core-shell-structured APP@COFs hybrid for enhanced flame retardancy and mechanical property of epoxy resin (EP). Adv Compos Hybrid Mater. 2022. https://doi.org/10.1007/s42114-021-00411-0.

    Article  Google Scholar 

  26. Zhu M, Ma Z, Liu L, Zhang J, Huo S, Song P. Recent advances in fire-retardant rigid polyurethane foam. J Mater Sci Technol. 2022;112:315–28.

    Article  Google Scholar 

  27. Tang G, Jiang H, Yang Y, Chen D, Liu C, Zhang P, et al. Preparation of melamine-formaldehyde resin-microencapsulated ammonium polyphosphate and its application in flame retardant rigid polyurethane foam composites. J Polym Res. 2020. https://doi.org/10.1007/s10965-020-02343-7.

    Article  Google Scholar 

  28. Dong X, Yang J, Hua X, Nie S, Kong F. Synthesis of a novel char-forming agent (PEIC): Improvement in flame retardancy, thermal stability, and smoke suppression for intumescent flame-retardant polypropylene composites. J Appl Polym Sci. 2020;137(3):48296. https://doi.org/10.1002/app.48296.

    Article  CAS  Google Scholar 

  29. Naikwadi AT, Samui AB, Mahanwar PA. Melamine-formaldehyde microencapsulated n-Tetracosane phase change material for solar thermal energy storage in coating. Solar Energy Mater Solar Cells. 2020;215:110676. https://doi.org/10.1016/j.solmat.2020.110676.

    Article  CAS  Google Scholar 

  30. Rocky BP, Thompson AJ. Analyses of the chemical compositions and structures of four bamboo species and their natural fibers by infrared, laser, and x-ray spectroscopies. Fibers Polym. 2021;22(4):916–27. https://doi.org/10.1007/s12221-021-0303-8.

    Article  CAS  Google Scholar 

  31. Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK. Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. J Appl Polym Sci. 2011;119(3):1619–26. https://doi.org/10.1002/app.32826.

    Article  CAS  Google Scholar 

  32. Yang X, Tu Q, Shen X, Pan M, Jiang C, Lai X, et al. Synergistic modification by mercapto hyperbranched polysiloxane and functionalized graphene oxide on the surface of aramid fiber. Polym Test. 2020;91:106783. https://doi.org/10.1016/j.polymertesting.2020.106783.

    Article  CAS  Google Scholar 

  33. Kandelbauer A, Despres A, Pizzi A, Taudes I. Testing by Fourier transform infrared species variation during melamine-urea-formaldehyde resin preparation. J Appl Polym Sci. 2007;106(4):2192–7. https://doi.org/10.1002/app.26757.

    Article  CAS  Google Scholar 

  34. Liu Z, Dai M, Hu Q, Liu S, Gao X, Ren F, et al. Effect of microencapsulated ammonium polyphosphate on the durability and fire resistance of waterborne intumescent fire-retardant coatings. J Coat Technol Res. 2019;16(1):135–45. https://doi.org/10.1007/s11998-018-0108-x.

    Article  CAS  Google Scholar 

  35. Li Y, Jiang L, Xiong C, Peng W. Effect of different surface treatment for bamboo fiber on the crystallization behavior and mechanical property of bamboo fiber/nanohydroxyapatite/poly(lactic-co-glycolic) composite. Ind Eng Chem Res. 2015;54(48):12017–24. https://doi.org/10.1021/acs.iecr.5b02724.

    Article  CAS  Google Scholar 

  36. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol. 2011;91(1):1–33. https://doi.org/10.1016/j.jaap.2011.01.004.

    Article  CAS  Google Scholar 

  37. Wang J, Dong J, Zhang J, Zhu B, Cui D. Effects of fiber-surface modification on the properties of bamboo flour/polypropylene composites and their interfacial compatibility. J Polym Eng. 2018;38(2):157–66. https://doi.org/10.1515/polyeng-2016-0432.

    Article  CAS  Google Scholar 

  38. Wang Z, Han E, Wei K. Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating. Surf Coat Technol. 2006;200(20–21):5706–16.

    Article  CAS  Google Scholar 

  39. Zhou S, Lu H, Song L, Wang Z, Hu Y, Ni J, et al. Microencapsulated ammonium polyphosphate with polyurethane shell: application to flame retarded polypropylene/ethylene-propylene diene terpolymer blends. J Macromol Sci Part A Pure Appl Chem. 2009;46(2):136–44. https://doi.org/10.1080/10601320802594675.

    Article  CAS  Google Scholar 

  40. Sun Y, Yuan B, Shang S, Zhang H, Shi Y, Yu B, et al. Surface modification of ammonium polyphosphate by supramolecular assembly for enhancing fire safety properties of polypropylene. Compos Part B Eng. 2020;181:107588. https://doi.org/10.1016/j.compositesb.2019.107588.

    Article  CAS  Google Scholar 

  41. Kong Q, Zhu H, Huang S, Wu T, Zhu F, Zhang Y, et al. Influence of multiply modified FeCu-montmorillonite on fire safety and mechanical performances of epoxy resin nanocomposites. Thermochim Acta. 2022;707:179112. https://doi.org/10.1016/j.tca.2021.179112.

    Article  CAS  Google Scholar 

  42. Kong Q, Zhu H, Fan J, Zheng G, Zhang C, Wang Y, et al. Boosting flame retardancy of epoxy resin composites through incorporating ultrathin nickel phenylphosphate nanosheets. J Appl Polym Sci. 2021;138(16):50265. https://doi.org/10.1002/app.50265.

    Article  CAS  Google Scholar 

  43. Nie S, Song L, Guo Y, Wu K, Xing W, Lu H, et al. Intumescent flame retardation of starch containing polypropylene semibiocomposites: flame retardancy and thermal degradation. Ind Eng Chem Res. 2009;48(24):10751–8. https://doi.org/10.1021/ie9012198.

    Article  CAS  Google Scholar 

  44. Wu K, Hu Y, Song L, Lu H, Wang Z. Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Ind Eng Chem Res. 2009;48(6):3150–7. https://doi.org/10.1021/ie801230h.

    Article  CAS  Google Scholar 

  45. Materazzi S. The decomposition mechanism of Noradrenaline complexes with transition-metal ions: A coupled TG–FT-IR study. Thermochim Acta. 1998;319(1–2):131–8.

    Article  CAS  Google Scholar 

  46. Ding J, Zhang Y, Zhang X, Kong Q, Zhang J, Liu H, et al. Improving the flame-retardant efficiency of layered double hydroxide with disodium phenylphosphate for epoxy resin. J Therm Anal Calorim. 2020;140(1):149–56. https://doi.org/10.1007/s10973-019-08372-9.

    Article  CAS  Google Scholar 

  47. Jiao CM, Zhang YL, Dong HX, Chen WJ, Liu W, Li SX, et al. Novel phenolic resin hollow microspheres: flame retardancy and toxicity reduction in thermoplastic polyurethane elastomer. Express Polym Lett. 2021;15(9):887–98. https://doi.org/10.3144/expresspolymlett.2021.71.

    Article  CAS  Google Scholar 

  48. Huang GB, Chen W, Wu T, Guo HC, Fu CY, Xue YJ, et al. Multifunctional graphene-based nano-additives toward high-performance polymer nanocomposites with enhanced mechanical, thermal, flame retardancy and smoke suppressive properties. Chem Eng J. 2021;410:127590. https://doi.org/10.1016/j.cej.2020.127590.

    Article  CAS  Google Scholar 

  49. Sai T, Ran S, Guo Z, Yan H, Zhang Y, Wang H, et al. Transparent, highly thermostable and flame retardant polycarbonate enabled by rod-like phosphorous-containing metal complex aggregates. Chem Eng J. 2021;409:128223. https://doi.org/10.1016/j.cej.2020.128223.

    Article  CAS  Google Scholar 

  50. Liu L, Zhu M, Ma Z, Xu X, Dai J, Yu Y, et al. Small multiamine molecule enabled fire-retardant polymeric materials with enhanced strength, toughness, and self-healing properties. Chem Eng J. 2022;440:135645. https://doi.org/10.1016/j.cej.2022.135645.

    Article  CAS  Google Scholar 

  51. Ma ZW, Zhang JZ, Maluk C, Yu YM, Seraji SM, Yu B, et al. A lava-inspired micro/nano-structured ceramifiable organic-inorganic hybrid fire-extinguishing coating. Matter. 2022;5(3):911–32. https://doi.org/10.1016/j.matt.2021.12.009.

    Article  CAS  Google Scholar 

  52. Xu B, Wu X, Ma W, Qian L, Xin F, Qiu Y. Synthesis and characterization of a novel organic-inorganic hybrid char-forming agent and its flame-retardant application in polypropylene composites. J Anal Appl Pyrol. 2018;134:231–42. https://doi.org/10.1016/j.jaap.2018.06.013.

    Article  CAS  Google Scholar 

  53. Zhang N, Zhang J, Yan H, Guo X, Sun Q, Guo R. A novel organic-inorganic hybrid K-HBPE@APP performing excellent flame retardancy and smoke suppression for polypropylene. J Hazard Mater. 2019;373:856–65. https://doi.org/10.1016/j.jhazmat.2019.04.016.

    Article  CAS  PubMed  Google Scholar 

  54. Wang P-J, Liao D-J, Hu X-P, Pan N, Li W-X, Wang D-Y, et al. Facile fabrication of biobased P-N-C-containing nano-layered hybrid: Preparation, growth mechanism and its efficient fire retardancy in epoxy. Polym Degrad Stab. 2019;159:153–62. https://doi.org/10.1016/j.polymdegradstab.2018.11.024.

    Article  CAS  Google Scholar 

  55. Pan N, Jin Y, Wang X, Hu X, Chi F, Zou H, et al. A self-assembled supramolecular material containing phosphoric acid for ultrafast and efficient capture of uranium from acidic solutions. ACS Sustain Chem Eng. 2019;7(1):950–60. https://doi.org/10.1021/acssuschemeng.8b04596.

    Article  CAS  Google Scholar 

  56. Hong H, Xiao R, Guo Q, Liu H, Zhang H. Quantitively characterizing the chemical composition of tailored bagasse fiber and its effect on the thermal and mechanical properties of polylactic acid-based composites. Polymers. 2019;11(10):1567. https://doi.org/10.3390/polym11101567.

    Article  CAS  PubMed Central  Google Scholar 

  57. Chen Z, Jiang M, Chen Z, Chen T, Yu Y, Jiang J. Preparation and characterization of a microencapsulated flame retardant and its flame-retardant mechanism in unsaturated polyester resins. Powder Technol. 2019;354:71–81. https://doi.org/10.1016/j.powtec.2019.05.077.

    Article  CAS  Google Scholar 

  58. Zhou T, Xu H, Cai L, Wang J. Construction of anti-flame network structures in cotton fabrics with pentaerythritol phosphate urea salt and nano SiO2. Appl Surf Sci. 2020;507:145175. https://doi.org/10.1016/j.apsusc.2019.145175.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors deeply appreciate the Anhui Provincial Natural Science Foundation (1908085J20, 2008085QE269), the Key research and development project in Anhui Province (Grant No. 2022i01020016), the National Natural Science Foundation of China (Nos. 51775001), the University Synergy Innovation Program of Anhui Province (GXXT-2020-057, GXXT-2019-027, GXXT-2020-079), Natural Science Research Project of Universities in Anhui Province (KJ2020A0326).

Author information

Authors and Affiliations

Authors

Contributions

Cheng-ye Fang contributed to experiment, data curation, investigation, visualization, and writing-original draft; Shi-bin Nie contributed to conceptualization, methodology, writing–review and editing, supervision, and funding acquisition; Yu-xuan Xu contributed to writing–review and editing, validation, and formal analysis; Ji-nian Yang contributed to validation and formal analysis; Xiang Dong contributed to data curation and writing–review; Fan-bei Kong and Chao Han contributed to data curation.

Corresponding authors

Correspondence to Shi-bin Nie or Yu-xuan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Sb., Fang, Cy., Xu, Yx. et al. Water resistance, flame retardancy, and thermal properties of hydrophobic polypropylene/bamboo fiber composites. J Therm Anal Calorim 147, 12547–12559 (2022). https://doi.org/10.1007/s10973-022-11491-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11491-5

Keywords

Navigation