Skip to main content
Log in

Determining co-combustion characteristics, kinetics and synergy behaviors of raw and torrefied forms of two distinct types of biomass and their blends with lignite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the combustion characteristics and kinetics of various mixtures of both raw and torrefied rose pulp and red pine sawdust with each other and with Elbistan lignite were investigated in the context of lignocellulosic biomasses’ potential use as fuel. Ignition temperatures, peak temperatures, burnout temperatures, and comprehensive combustion indexes of the fuel mixtures were found to rise with the torrefaction process. This finding indicates that the fuel/combustion performance of the waste biomass can be improved by the torrefaction process. Moreover, the combustion behavior of rose processing waste and pine sawdust has been significantly improved by adding lignite to the samples to be torrefied. Average activation energies of raw pine sawdust, rose processing waste, and Elbistan lignite were found to be 178, 187, and 91 kJ mol–1, respectively. However, the activation energies of both raw samples and their mixtures with lignite as well as each other decreased with the torrefaction process. Furthermore, a synergistic effect was also observed during the combustion of the mixtures of both raw and torrefied biomass with Elbistan lignite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eurocoal. 2020. https://euracoal.eu/info/country-profiles/turkey/. Accessed 5 Feb 2021.

  2. Godron P, Cebeci ME, Tör OB, Saygın D, In: Increasing the Share of Renewables in Turkey’s Power System: Options for Transmission Expansion and Flexibility, 2018. https://www.shura.org.tr/wp-content/uploads/2018/12/SHURA_Increasing-the-Share-of-Renewables-in-Turkeys-Power System_Report.pdf. Accessed 2 Feb 2021.

  3. Atay OA. Yağ Gülü Damıtma Atıkları, Kızılçam Kabuğu ve Linyit Kömür Tozundan Elde Edilen Peletlerin Baca Gazı Emisyonlarının Belirlenmesi. Ziraat Fakültesi Dergisi. 2016;13(2):1–9.

    Google Scholar 

  4. Bada SO, Falcon RMS, Falcon LM. Investigation of combustion and co-combustion characteristics of raw and thermal treated bamboo with thermal gravimetric analysis. Thermochim Acta. 2014. https://doi.org/10.1016/j.tca.2014.05.021.

    Article  Google Scholar 

  5. Toptas A, Yildirim Y, Duman G, Yanik J. Combustion behavior of different kinds of torrefied biomass and their blends with lignite. Bioresour Technol. 2015. https://doi.org/10.1016/j.biortech.2014.11.072.

    Article  PubMed  Google Scholar 

  6. Dhungana A, Basu P, Dutta A. Effects of reactor design on the torrefaction of biomass. J Energy Resour Technol. 2012. https://doi.org/10.1115/1.4007484.

    Article  Google Scholar 

  7. International Biomass Torrefaction Council. 2019. http://ibtc.bioenergyeurope.org/torrefaction/. Accessed 12 Oct 2019.

  8. Eseyin AE, Steele PH, Pittman CU Jr. Current trends in the production and applications of torrefied wood/biomass-A review. BioResources. 2015;10(4):8812–58.

    Article  CAS  Google Scholar 

  9. Granados DA, Basu P, Nhuchhen DR, Chejne F. Investigation into torrefaction kinetics of biomass and combustion behaviors of raw, torrefied and char samples. Biofuels. 2019. https://doi.org/10.1080/17597269.2018.1558837.

    Article  Google Scholar 

  10. Fisher EM, Dupont C, Darvell LL, Commandre JM, Saddawi A, et al. Combustion and gasification characteristics of chars from raw and torrefied biomass. Bioresour Technol Elsevier. 2012. https://doi.org/10.1016/j.biortech.2012.05.109.

    Article  Google Scholar 

  11. Jones JM, Bridgeman TG, Darvell LI, Gudka B, Saddawi A, Williams A. Combustion properties of torrefied willow compared with bituminous coals. Fuel Process Technol. 2012. https://doi.org/10.1016/j.fuproc.2012.03.010.

    Article  Google Scholar 

  12. Zhang S, Chen T, Li W, Dong Q, Xiong Y. Physicochemical properties and combustion behavior of duckweed during wet torrefaction. Bioresour Technol. 2016. https://doi.org/10.1016/j.biortech.2016.07.086.

    Article  PubMed  Google Scholar 

  13. Broström M, Nordin A, Pommer L, Branca C, Di Blasi C. Influence of torrefaction on the devolatilization and oxidation kinetics of wood. J Anal Appl Pyrolysis. 2012. https://doi.org/10.1016/j.jaap.2012.03.011.

    Article  Google Scholar 

  14. Tapasvi D, Khalil R, Skreiberg Ø, Tran KQ, Grønli M. Torrefaction of Norwegian birch and spruce: an experimental study using macro-TGA. Energy Fuels. 2012. https://doi.org/10.1021/ef300993q.

    Article  Google Scholar 

  15. Kopczyński M, Plis A, Zuwała J. Thermogravimetric and kinetic analysis of raw and torrefied biomass combustion. Chem Process Eng. 2015. https://doi.org/10.1515/cpe-2015-0014.

    Article  Google Scholar 

  16. Aydinli M, Tutaş M. Production of rose absolute from rose concrete. Flavour Fragr J. 2003. https://doi.org/10.1002/ffj.1138.

    Article  Google Scholar 

  17. Demircan V. Isparta İlinde Gülün Üretim Girdileri, Maliyeti ve Karlılığının Belirlenmesi, Süleyman Demirel Üniversitesi. Fen Bilimleri Enstitüsü Dergisi. 2005;9:3.

    Google Scholar 

  18. Tosun İ. Gül işleme posasının evsel katı atıklarla birlikte kompostlaşabilirliği, Yıldız Teknik Üniversitesi, Unpublished PhD thesis, 2003.

  19. Türkiye Ormancılığı. 2019. ISBN: 978–975–93478–4–0, Kuban Matbaacılık Yayıncılık. Ankara.

  20. FAOSTAT. 2021. http://www.fao.org/faostat/en/#home. Accessed 4 Feb 2021.

  21. Hameed Z, Naqvi SR, Naqvi M, Ali I, Taqvi SAA, Gao N, Hussain SA, Hussain S. A comprehensive review on thermal coconversion of biomass, sludge, coal, and their blends using thermogravimetric analysis. J Chem. 2020. https://doi.org/10.1155/2020/5024369.

    Article  Google Scholar 

  22. Zhang Q, Fang J, Meng Z, Chen C, Qin Z. Thermogravimetric analysis of soot combustion in the presence of ash and soluble organic fraction. RSC Adv. 2020. https://doi.org/10.1039/D0RA06384C.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nhuchhen DR, Basu P, Acharya B. A comprehensive review on biomass torrefaction. Int J Renew Energ Biofuels. 2014. https://doi.org/10.5171/2014.506376.

    Article  Google Scholar 

  24. Mason DM, Gandhi K. Formulas for calculating the heating value of coal and coal char: development, tests, and uses (No. CONF-800814–25). Institute of Gas Technology, Chicago, IL (USA), 1980.

  25. Demirbaş A. Relationships proximate analysis results and higher heating values of lignites. Energ Source Part A. 2008. https://doi.org/10.1080/10916460701462846.

    Article  Google Scholar 

  26. Sis H. Evaluation of combustion characteristics of different size Elbistan lignite by using TG/DTG and DTA. J Therm Anal Calorim. 2007. https://doi.org/10.1007/s10973-005-7447-4.

    Article  Google Scholar 

  27. Yurdakul S. Determination of co-combustion properties and thermal kinetics of poultry litter/coal blends using thermogravimetry. Renew Energ. 2016. https://doi.org/10.1016/j.renene.2015.12.034.

    Article  Google Scholar 

  28. Chen WH, Lin BJ, Lin YY, Chu YS, Ubando AT, Show PL, Ong HC, Chang JS, Ho SH, Culaba AB, Pétrissans A. Progress in biomass torrefaction: Principles, applications and challenges. Prog Energy Combust Sci. 2021. https://doi.org/10.1016/j.pecs.2020.100887.

    Article  Google Scholar 

  29. Anca-Couce A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci. 2016. https://doi.org/10.1016/j.pecs.2015.10.002.

    Article  Google Scholar 

  30. Poletto M. Assessment of the thermal behavior of lignins from softwood and hardwood species. Maderas Cienc Tecnol. 2017. https://doi.org/10.4067/S0718-221X2017005000006.

    Article  Google Scholar 

  31. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym Degrad Stabil. 2008. https://doi.org/10.1016/j.polymdegradstab.2007.10.012.

    Article  Google Scholar 

  32. Liu Z, Jiang Z, Fei B. Thermal decomposition characteristics of Chinese fir. BioResources. 2013;8(4):5014–24.

    Article  Google Scholar 

  33. Qing W, Hao X, Hongpeng L, Chunxia J, Jingru B. Thermogravimetric analysis of the combustion characteristics of oil shale semi-coke/biomass blends. Oil Shale. 2011. https://doi.org/10.3176/oil.2011.2.03.

    Article  Google Scholar 

  34. Wang G, Zhang J, Shao J, et al. Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends. Energy Convers Manage. 2016. https://doi.org/10.1016/j.enconman.2016.07.045.

    Article  Google Scholar 

  35. Bahreini M, Movahedi M, Peyvandi M, Nematollahi F, Tehrani HS. Thermodynamics and kinetic analysis of carbon nanofibers as nanozymes. Nanotechnol Sci Appl. 2019. https://doi.org/10.2147/NSA.S208310.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sonibare OO, Ehinola OA, Egashira R, KeanGiap L. An investigation into the thermal decomposition of Nigerian Coal. J Appl Sci. 2005;5:104–7.

    Article  Google Scholar 

  37. Pecha MB, Arbelaez JIM, Garcia-Perez M, Chejne F, Ciesielski PN. Progress in understanding the four dominant intra-particle phenomena of lignocellulose pyrolysis: chemical reactions, heat transfer, mass transfer, and phase change. Green Chem. 2019. https://doi.org/10.1039/C9GC00585D.

    Article  Google Scholar 

  38. Basu P. Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic press, 2018.

  39. Muthuraman M, Namioka T, Yoshikawa K. A comparison of co-combustion characteristics of coal with wood and Hydrothermally treated municipal solid waste. Bioresour Technol. 2010. https://doi.org/10.1016/j.biortech.2009.11.060.

    Article  PubMed  Google Scholar 

  40. Gil MV, Riaza J, Álvarez L, Pevida C, Pis JJ, Rubiera F. Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor. Appl Energy. 2012. https://doi.org/10.1016/j.apenergy.2011.09.017.

    Article  Google Scholar 

  41. Mi B, Liu Z, Hu W, Wei P, Jiang Z, Fei B. Investigating pyrolysis and combustion characteristics of torrefied bamboo, torrefied wood and their blends. Bioresour Technol. 2016. https://doi.org/10.1016/j.biortech.2016.02.087.

    Article  PubMed  Google Scholar 

  42. Idris SS, Abd Rahman N, Ismail K. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresour Technol. 2012. https://doi.org/10.1016/j.biortech.2012.07.065.

    Article  PubMed  Google Scholar 

  43. Schniewind AP. Concise Encyclopedia of Wood and Wood Based Materials. 1st ed. Elmsford: Pergamon Press; 1989.

    Google Scholar 

  44. Zakrzewski R. Pyrolysis kinetics of wood comparison of iso and polythermal thermogravimetric methods. Electron J Pol Agric Univ. 2003;6:2.

    Google Scholar 

  45. Vhathvarothai N, Ness J, Yu QJ. An investigation of thermal behaviour of biomass and coal during copyrolysis using thermogravimetric analysis. Int J Energy Res. 2014. https://doi.org/10.1002/er.3120.

    Article  Google Scholar 

  46. Kocabaş-Ataklı ZÖ, Okyay-Öner F, Yürüm Y. Combustion characteristics of Turkish hazelnut shell biomass, lignite coal, and their respective blends via thermogravimetric analysis. J Therm Anal Calorim. 2015. https://doi.org/10.1007/s10973-014-4348-4.

    Article  Google Scholar 

  47. Liu X, Chen M, Wei Y. Kinetics based on two-stage scheme for co-combustion of herbaceous biomass and bituminous coal. Fuel. 2015. https://doi.org/10.1016/j.fuel.2014.11.085.

    Article  Google Scholar 

  48. Manouchehrinejad M, Mani S. Torrefaction after pelletization (TAP): Analysis of torrefied pellet quality and co-products. Biomass Bioenerg. 2018. https://doi.org/10.1016/j.biombioe.2018.08.015.

    Article  Google Scholar 

  49. Bergman PC, Boersma AR, Zwart RWR, Kiel JHA. Torrefaction for biomass co-firing in existing coal-fired power stations. Energy Research Centre of the Netherlands. 2005. ECN-C-05-013.

  50. Zhang Y, Geng P, Liu R. Synergistic combination of biomass torrefaction and co-gasification: reactivity studies. Bioresour Technol. 2017. https://doi.org/10.1016/j.biortech.2017.08.197.

    Article  PubMed  Google Scholar 

  51. Rahib Y, Elorf A, Sarh B, Ezahri M, Rahib Y, Bonnamy S. Experimental analysis on thermal characteristics of argan nut shell (ANS) biomass as a green energy resource. Int J Renew Energ Res. 2019;9(4):1606–15.

    Google Scholar 

  52. Park SW, Jang CH, Baek KR, Yang JK. Torrefaction and low-temperature carbonization of woody biomass: Evaluation of fuel characteristics of the products. Energy. 2012. https://doi.org/10.1016/j.energy.2012.07.024.

    Article  Google Scholar 

  53. Özbaş KE, Kök MV. Effect of heating rate on thermal properties and kinetics of raw and cleaned coal samples. Energy Sources. 2003. https://doi.org/10.1080/00908310290142091.

    Article  Google Scholar 

  54. Otero M, Gómez X, García AI, Morán A. Effects of sewage sludge blending on the coal combustion: a thermogravimetric assessment. Chemosphere. 2007. https://doi.org/10.1016/j.chemosphere.2007.05.077.

    Article  PubMed  Google Scholar 

  55. Chowdhury ZZ, Pal K, Johan RB, Dabdawb WAY, Ali ME, Rafique RF. Comparative evaluation of physiochemical properties of a solid fuel derived from Adansonia digitata trunk using torrefaction. BioResources. 2017;2:3816–33.

    Google Scholar 

  56. André RN, Pinto F, Franco C, Dias M, Gulyurtlu I, Matos MAA, Cabrita I. Fluidised bed co-gasification of coal and olive oil industry wastes. Fuel. 2005. https://doi.org/10.1016/j.fuel.2005.02.018.

    Article  Google Scholar 

  57. Aznar MP, Caballero MA, Sancho JA, Francés E. Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Process Technol. 2006. https://doi.org/10.1016/j.fuproc.2005.09.006.

    Article  Google Scholar 

  58. Xiang-guo L, Bao-guo M, Li X, Zhen-wu H, Xin-gang W. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta. 2006;441:79–83.

    Article  Google Scholar 

  59. Haykiri-Acma H, Yaman S. Effect of co-combustion on the burnout of lignite/biomass blends: a Turkish case study. Waste Manage. 2008. https://doi.org/10.1016/j.wasman.2007.08.028.

    Article  Google Scholar 

  60. Fitzpatrick EM, Kubacki ML, Jones JM, Pourkashanian M, Ross AB, Williams A, Kubica K. The mechanism of the formation of soot and other pollutants during the co-firing of coal and pine wood in a fixed bed combustor. Fuel. 2009. https://doi.org/10.1016/j.fuel.2009.02.037.

    Article  Google Scholar 

  61. Kazagic A, Smajevic I. Synergy effects of co-firing wooden biomass with Bosnian coal. Energy. 2009. https://doi.org/10.1016/j.energy.2008.10.007.

    Article  Google Scholar 

  62. Sahu SG, Sarkar P, Chakraborty N, Adak AK. Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars. Fuel Process Technol. 2010. https://doi.org/10.1016/j.fuproc.2009.12.001.

    Article  Google Scholar 

  63. Yuzbasi NS, Selçuk N. Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR. Fuel Process Technol. 2011;92(5):1101–8.

    Article  CAS  Google Scholar 

  64. Riaza J, Gil MV, Álvarez L, Pevida C, Pis JJ, Rubiera F. Oxy-fuel combustion of coal and biomass blends. Energy. 2012. https://doi.org/10.1016/j.energy.2012.02.057.

    Article  Google Scholar 

  65. Farrow TS, Sun C, Snape CE. Impact of biomass char on coal char burn-out under air and oxy-fuel conditions. Fuel. 2013. https://doi.org/10.1016/j.fuel.2012.07.073.

    Article  Google Scholar 

  66. Vamvuka D, Tsamourgeli V, Zaharaki D, Komnitsas K. Potential of poor lignite and Biomass blends in energy production. Energ Sources Part A. 2016. https://doi.org/10.1080/15567036.2015.1014980.

    Article  Google Scholar 

  67. Wei Y, Chen M, Niu S, et al. Evaluation on oxy-fuel co-combustion behavior of Chinese lignite and eucalyptus bark. J Ther Anal Calorim. 2016. https://doi.org/10.1007/s10973-015-5050-x.

    Article  Google Scholar 

  68. Zhang R, Lei K, Ye B, Cao J, Liu D. Combustion characteristics and synergy behaviors of biomass and coal blending in oxy-fuel conditions: A single particle co-combustion method. Sci China Technol Sci. 2018. https://doi.org/10.1007/s11431-018-9214-9.

    Article  Google Scholar 

  69. Liu HP, Liang WX, Qin H, Wang Q. Synergy in co-combustion of oil shale semi-coke with torrefied cornstalk. App Therm Eng. 2016. https://doi.org/10.1016/j.applthermaleng.2016.08.125.

    Article  Google Scholar 

  70. Caliskan Sarikaya A, Haykiri Acma H, Yaman S. Synergistic Interactions During Cocombustion of Lignite, Biomass, and Their Chars. J Energy Resour Technol. 2019. https://doi.org/10.1115/1.4044057.

    Article  Google Scholar 

  71. Rizkiana J, Zahra ACA, Wulandari W, Saputra WH, Andrayukti R, Sianipar AM, Sasongko D. Effects of coal and biomass types towards the quality of hybrid coal produced via co-torrefaction. In IOP Conf Ser Mater Sci Eng. 2020. https://doi.org/10.1088/1757-899X/823/1/012028.

    Article  Google Scholar 

  72. Shao H, Zhao H, Xie J, Qi J, Shupe TF. Agricultural and forest residues towards renewable chemicals and materials using microwave liquefaction. Int J Polym Sci. 2019. https://doi.org/10.1155/2019/7231263.

    Article  Google Scholar 

  73. Szwaja S, Magdziarz A, Zajemska M, Poskart A. A torrefaction of Sida hermaphrodita to improve fuel properties. Advanced analysis of torrefied products. Renew Energy. 2019. https://doi.org/10.1016/j.renene.2019.04.055.

    Article  Google Scholar 

  74. Álvarez-Álvarez P, Pizarro C, Barrio-Anta M, Cámara-Obregón A, Bueno JLM, Álvarez A, Gutiérrez I, Burslem DF. Evaluation of tree species for biomass energy production in Northwest Spain. Forests. 2018. https://doi.org/10.3390/f9040160.

    Article  Google Scholar 

  75. Balat M. Pyrolysis of cherry laurel (Prunus Laurocerasus L.) seed in the presence of sodium carbonate. Energy Explor Exploit. 2016. https://doi.org/10.1177/0144598715623682.

    Article  Google Scholar 

  76. Ndecky A, Tavares PW, Senghor A, Kane M, Ndiath H, Youm I. Proximate analysis of alternatives cooking solides fuels in sub saharan by using astm standards. Int J Clean Coal Energy. 2022. https://doi.org/10.4236/ijcce.2022.111001.

    Article  Google Scholar 

  77. Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010. https://doi.org/10.1016/j.biortech.2010.02.008.

    Article  PubMed  Google Scholar 

  78. Haykiri-Acma H, Yaman S, Kucukbayrak S. Co-combustion of low rank coal/waste biomass blends using dry air or oxygen. Appl Therm Eng. 2013. https://doi.org/10.1016/j.applthermaleng.2012.06.028.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK), Grant No.: 118Y247.

Author information

Authors and Affiliations

Authors

Contributions

SA was involved in the methodology, formal analysis, and software. MC contributed to writing—reviewing and editing. SY helped in the conceptualization, project administration, supervision, data curation, and writing—original draft preparation.

Corresponding author

Correspondence to Sema Yurdakul.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armakan, S., Civan, M. & Yurdakul, S. Determining co-combustion characteristics, kinetics and synergy behaviors of raw and torrefied forms of two distinct types of biomass and their blends with lignite. J Therm Anal Calorim 147, 12855–12869 (2022). https://doi.org/10.1007/s10973-022-11432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11432-2

Keywords

Navigation