Skip to main content
Log in

Cobalt ferrite nanoparticles synthesis by sol–gel auto-combustion method in the presence of agarose: a non-isothermal kinetic analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, cobalt ferrite (CoFe2O4) nanoparticles were synthesized by sol–gel auto-combustion technique in the presence of agarose as a natural gelling agent, and its influence on the morphology and magnetic properties of CoFe2O4 as well as kinetic parameters of their synthesis was investigated. The synthesized samples were characterized by TG–DTA, XRD, FTIR, FE-SEM, and VSM. A highly crystalized CoFe2O4 with a spinel structure was obtained by calcination at 1073 K for three hours. The agarose acted as a chelating and templating agent during the formation of CoFe2O4 nanoparticles, so that it showed a significant effect not only on decreasing agglomeration but also on reducing crystallite size from 70.3 to 54.6 nm. The VSM results revealed that coercivity increased from 818 to 1076 Oe by agarose addition. Furthermore, the effect of adding agarose on the kinetic parameters and formation mechanism of CoFe2O4 nanoparticles during the calcination process under a non-isothermal condition was investigated by differential thermal analysis (DTA). The results showed that agarose reduces the activation energy in CoFe2O4 formation during the calcination process from 143.9 to 64.33 kJ mol−1. Moreover, the mechanism of this process was changed after agarose addition from Avrami–Erofeev models (A) to the phase boundary reaction (R). Overall, these results demonstrated the positive effect of agarose on the nucleation of cobalt ferrite nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jauhar S, Kaur J, Goyal A, Singhal S. Tuning the properties of cobalt ferrite: a road towards diverse applications. RSC Adv. 2016;6:97694–719.

    Article  CAS  Google Scholar 

  2. Mathew DS, Juang R-S. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem Eng J. 2007;129:51–65.

    Article  CAS  Google Scholar 

  3. Kharisov BI, Dias HVR, Kharissova OV. Mini-review: ferrite nanoparticles in the catalysis. Arab J Chem. 2019;12:1234–46.

    Article  CAS  Google Scholar 

  4. Amiri S, Shokrollahi H. The role of cobalt ferrite magnetic nanoparticles in medical science. Mater Sci Eng C. 2013;33:1–8.

    Article  CAS  Google Scholar 

  5. Dippong T, Toloman D, Levei E, Cadar O, Mesaros A. A possible formation mechanism and photocatalytic properties of CoFe2O4/PVA-SiO2 nonocomposites. Thermochim Acta. 2018;666:103–15.

    Article  CAS  Google Scholar 

  6. Afshari M, Rouhani Isfahani A, Hasani S, Davar F, Jahanbani AK. Effect of apple cider vinegar agent on the microstructure, phase evolution, and magnetic properties of CoFe2O4 magnetic nanoparticles. Int J Appl Ceram Technol. 2019;16:1612–21.

    Article  CAS  Google Scholar 

  7. Imanipour P, Hasani S, Seifoddini A, Nabiałek M. Synthesis and characterization of zinc and vanadium co-substituted CoFe2O4 nanoparticles synthesized by using the sol-gel auto-combustion method. Nanomaterials. 2022;12:752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alex G. Modern ferrite technology. Springer; 2006.

    Google Scholar 

  9. Verma P, Samuel OD, Verma TN, Dwivedi G. Advancement in materials manufacturing and energy engineering. Springer; 2022.

    Google Scholar 

  10. Hashemi SM, Hasani S, Jahanbani Ardakani K, Davar F. The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method. J Magn Magn Mater. 2019;492: 165714.

    Article  CAS  Google Scholar 

  11. Klein L, Aparicio M, Jitianu A. Handbook of Sol-Gel Science and Technology. 2018.

  12. Sutka A, Mezinskis G. Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. J Front Mater Sci. 2012;6:128–41.

    Article  Google Scholar 

  13. Liqin Q, Minlin G, Wenwei W, Shiqian O, Kaituo W, Bang L, et al. Co1−xMgxFe2O4 magnetic particles: preparation and kinetics research of thermal transformation of the precursor. Ceram Int. 2014;40:10857–66.

    Article  Google Scholar 

  14. Gabal MA, El-Bellihi AA, Ata-Allah SS. Effect of calcination temperature on Co (II) oxalate dihydrate–iron (II) oxalate dihydrate mixture: DTA–TG, XRD, Mössbauer, FT-IR and SEM studies (Part II). Mater Chem Phys. 2003;81:84–92.

    Article  CAS  Google Scholar 

  15. Diefallah E-HM, Basahel SN, El-Bellihi AA. Thermal decomposition of ammonium trioxalatoferrate(III) trihydrate in air. Thermochim Acta. 1997;290:123–32.

    Article  CAS  Google Scholar 

  16. Ghorbani S, Loghman-Estarki MR, Razavi RS, Alhaji A. A new method for the fabrication of MgO-Y2O3 composite nanopowder at low temperature based on bioorganic material. Ceram Int. 2018;44:2814–21.

    Article  CAS  Google Scholar 

  17. Rouhani AR, Esmaeil-Khanian AH, Davar F, Hasani S. The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel autocombustion method. Int J Appl Ceram Technol. 2018;15:758–65.

    Article  CAS  Google Scholar 

  18. Akinc M, Ma X, Klosterman L, Hu Y, Liu X, Schmidt-Rohr K, et al. Aqueous route synthesis of mesoporous ZrO2 by agarose templation. J Am Ceram Soc. 2012;95:3455–62.

    Article  Google Scholar 

  19. Zhou J, Zhou M, Caruso RA. Agarose template for the fabrication of macroporous metal oxide structures. Langmuir ACS Publications. 2006;22:3332–6.

    CAS  Google Scholar 

  20. Kargar H, Ghasemi F, Darroudi M. Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceram Int. 2015;41:1589–94.

    Article  CAS  Google Scholar 

  21. Malek TJ, Chaki S, Tailor JP, Deshpande M. Nonisothermal decomposition kinetics of pure and Mn-doped Fe3O4 nanoparticles. J Therm Anal Calorim. 2018;132:895–905.

    Article  CAS  Google Scholar 

  22. Dippong T, Levei E, Cadar O, Goga F, Levei E, Cadar O. Influence of zinc substitution with cobalt on thermal behaviour, structure and morphology of zinc ferrite embedded in silica matrix. J Solid State Chem. 2019;275:159–66.

    Article  CAS  Google Scholar 

  23. Boonchom B, Maensiri S. Non-isothermal decomposition kinetics of NiFe2O4 nanoparticles synthesized using egg white solution route. J Therm Anal Calorim. 2009;97:879–84.

    Article  CAS  Google Scholar 

  24. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  25. Ansariniya M, Seifoddini A, Hasani S. (Fe0.9Ni0.1)77Mo5P9C7.5B1.5 bulk metallic glass matrix composite produced by partial crystallization: the non-isothermal kinetic analysis. J Alloys Compd. 2018;763:606–12.

    Article  CAS  Google Scholar 

  26. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry, application to a phenolic plastic. J Polym Sci Part C. 1964;5:183–95.

    Google Scholar 

  27. Starink MJ. Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci. 2007;42:483–9.

    Article  CAS  Google Scholar 

  28. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  29. Lesnikovich AI, Levchik SV. A method of finding invariant values of kinetic parameters. J Therm Anal. 1983;27:89–93.

    Article  CAS  Google Scholar 

  30. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  31. Vyazovkin S, Wight CA. Estimating realistic confidence intervals for the activation energy determined from thermoanalytical measurements. Anal Chem. 2000;72:3171–5.

    Article  CAS  PubMed  Google Scholar 

  32. Hasani S, Shamanian M, Shafyei A, Behjati P, Szpunar JAA. Non-isothermal kinetic analysis on the phase transformations of Fe–Co–V alloy. Thermochim Acta. 2014;596:89–97.

    Article  CAS  Google Scholar 

  33. Gorbachev VM. A solution of the exponential integral in the non-isothermal kinetics for linear heating. J Therm Anal Calorim. 1975;8:349–50.

    Article  CAS  Google Scholar 

  34. Sivakumar M, Kanagesan S, Babu RS, Jesurani S, Velmurugan R, Thirupathi C, et al. Synthesis of CoFe2O4 powder via PVA assisted sol–gel process. J Mater Sci Mater Electron. 2012;23:1045–9.

    Article  CAS  Google Scholar 

  35. Dippong T, Andrea E, Cadar O, Grigore I, Diamandescu L, Barbu-tudoran L, et al. Effect of nickel content on structural, morphological and magnetic properties of NixCo1-xFe2O4/SiO2 nanocomposites. J Alloys Compd. 2019;786:330–40.

    Article  CAS  Google Scholar 

  36. Ngo TPH, Le TK, Phuc T, Ngo H, Khoa T. Polyethylene glycol-assisted sol-gel synthesis of magnetic CoFe2O4 powder as photo-Fenton catalysts in the presence of oxalic acid. J Sol-Gel Sci Technol. 2018;88:211–9.

    Article  Google Scholar 

  37. Gharagozlou M. Synthesis, characterization and influence of calcination temperature on magnetic properties of nanocrystalline spinel Co-ferrite prepared by polymeric precursor method. J Alloy Compd. 2009;486:660–5.

    Article  CAS  Google Scholar 

  38. Xiao SH, Jiang WF, Li LY, Li XJ, Hua S, Fen W, et al. Low-temperature auto-combustion synthesis and magnetic properties of cobalt ferrite nanopowder. Mater Chem Phys. 2007;106:82–7.

    Article  CAS  Google Scholar 

  39. Mund HS, Ahuja BL. Structural and magnetic properties of Mg doped cobalt ferrite nano particles prepared by sol-gel method. Mater Res Bull. 2017;85:228–33.

    Article  CAS  Google Scholar 

  40. Köferstein R, Walther T, Hesse D, Ebbinghaus SG, Dietrich W, Ebbinghaus SG. Preparation and characterization of nanosized magnesium ferrite powders by a starch-gel process and corresponding ceramics. J Mater Sci. 2013;48:6509–18.

    Article  Google Scholar 

  41. Hammood AS, Hassan SS, Alkhafagy MT, Jaber HL. Effect of calcination temperature on characterization of natural hydroxyapatite prepared from carp fish bones. SN Appl Sci. 2019;1:436.

    Article  CAS  Google Scholar 

  42. Wong CW, Chan YS, Jeevanandam J, Pal K, Bechelany M, Abd Elkodous M, et al. Response surface methodology optimization of mono-dispersed MgO nanoparticles fabricated by ultrasonic-assisted sol-gel method for outstanding antimicrobial and antibiofilm activities. J Clust Sci. 2020;31:367–89.

    Article  CAS  Google Scholar 

  43. Ansari F, Sobhani A, Salavati-Niasari M. Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents. J Colloid Interface Sci. 2018;514:723–32.

    Article  CAS  PubMed  Google Scholar 

  44. Alhaji A, Shoja Razavi R, Ghasemi A, Loghman-Estarki MR, Ghorbani S. Study of crystallization behavior and kinetics of yttria-50 vol% magnesia composite nanopowders using a non-isothermal process. J Sol-Gel Sci Technol. 2018;85:93–102.

    Article  CAS  Google Scholar 

  45. Srinivasa Rao K, Ranga Nayakulu SV, Chaitanya Varma M, Choudary GSVRK, Rao KH. Controlled phase evolution and the occurrence of single domain CoFe2O4 nanoparticles synthesized by PVA assisted sol-gel method. J Magn Magn Mater. 2018;451:602–8.

    Article  CAS  Google Scholar 

  46. Online VA, Zhao Y, Xu Y, Zeng J, Kong B, Geng X, et al. Low-crystalline mesoporous CoFe2O4/C composite with oxygen vacancies for high energy density asymmetric supercapacitors. Rsc Adv. 2017;7:55513–22.

    Article  Google Scholar 

  47. Lu Z, Gao P, Ma R, Xu J, Wang Z, Rebrov EV. Structural, magnetic and thermal properties of one-dimensional CoFe2O4 microtubes. J Alloys Compd. 2016;665:428–34.

    Article  CAS  Google Scholar 

  48. Abraime B, Mahmoud A, Boschini F, Tamerd MA, Benyoussef A, Hamedoun M, et al. Tunable maximum energy product in CoFe2O4 nanopowder for permanent magnet application. J Magn Magn Mater. 2018;467:129–34.

    Article  CAS  Google Scholar 

  49. Nikmanesh H, Eshraghi M, Karimi S. Cation distribution, magnetic and structural properties of CoCrxFe2-xO4: effect of calcination temperature and chromium substitution. J Magn Magn Mater. 2019;471:294–303.

    Article  CAS  Google Scholar 

  50. Scherrer P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Kolloidchem Ein Lehrb. 1912. 65:387–409.

  51. Xiong J-Y, Narayanan J, Liu X, Chong TK, Chen SB, Chung T-S. Topology evolution and gelation mechanism of agarose gel. J Phys Chem B. 2005;109:5638–43.

    Article  CAS  PubMed  Google Scholar 

  52. Wu X, Wu W, Zhou K, Qin L, Liao S, Lin Y. Magnetic nanocrystalline Mg0.5Zn0.5Fe2O4: preparation, morphology evolution, and kinetics of thermal decomposition of precursor. J Supercond Nov Magn. 2014;27:511–8.

    Article  CAS  Google Scholar 

  53. Huang J, Su P, Wu W, Liu B. Co0.5Mn0.5LaxFe2−xO4 magnetic particles: preparation and kinetics research of thermal transformationof the precursor. J Supercond Nov Magn. 2014;27:2317–26.

    Article  CAS  Google Scholar 

  54. Lee CH, Kim HT, Yun EJ, Lee AR, Kim SR, Kim J-H, et al. A Novel Agarolytic β-Galactosidase Acts on Agarooligosaccharides for Complete Hydrolysis of Agarose into Monomers. Liu S-J, editor. Appl Environ Microbiol. 2014;80:5965–73.

  55. Yang B, Yu G, Zhao X, Jiao G, Ren S, Chai W. Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. FEBS J. 2009;276:2125–37.

    Article  CAS  PubMed  Google Scholar 

  56. Herbst A, Janiak C. Selective glucose conversion to 5-hydroxymethylfurfural (5-HMF) instead of levulinic acid with MIL-101Cr MOF-derivatives. New J Chem. 2016;40:7958–67.

    Article  CAS  Google Scholar 

  57. Zarrintaj P, Bakhshandeh B, Rezaeian I, Heshmatian B, Ganjali MR. A novel electroactive agarose-aniline pentamer platform as a potential candidate for neural tissue engineering. Sci Rep. 2017;7:1–12.

    Article  CAS  Google Scholar 

  58. Tako M, Tamaki Y, Teruya T, Takeda Y. The principles of starch gelatinization and retrogradation. Food Nutr Sci. 2014;5:280–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Hasani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, R., Siefoddini, A., Hasany, M. et al. Cobalt ferrite nanoparticles synthesis by sol–gel auto-combustion method in the presence of agarose: a non-isothermal kinetic analysis. J Therm Anal Calorim 147, 12217–12230 (2022). https://doi.org/10.1007/s10973-022-11391-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11391-8

Keywords

Navigation