Skip to main content
Log in

Assessment on the thermal and moisture migration of sand-based materials coupled with kaolin additive

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal and moisture diffusions in the sand-based materials are important factors for the thermal performance of ground heat exchangers in the ground source heat pumps. Based on the non-equilibrium thermodynamic principle, the coupled thermal and moisture migration of the sand-based materials with kaolin additive was evaluated by the numerical simulation with dealing with the thermo-physical and soil hydraulic properties of the backfill materials. The thermal diffusion range of the blend in one week was only 1/3 of the sand, and the moisture diffusion range was only 1/5 of the sand. The moisture migration range of the blend in one week enlarged by 174% compared with that in one day. The thermal migration ranges of the blend with the initial water contents of 20% in 7 days were about 115% higher than that with the 5% initial water content, while the moisture migration ranges widened by 239 times. The thermal and moisture migration ranges of the blend in 7 days were slightly influenced by the temperature. The sand/kaolin blend applied in ground heat exchanger can enhance the thermal diffusion and weaken the moisture migration. The data can provide some reference for the design and operation of the ground heat exchangers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Cross area of water in the infiltration bucket (m2)

C :

Specific water capacity (m1)

c :

Specific heat capacity (J kg−1 K1)

D w :

Isothermal moisture diffusivity (m2 s1)

D T :

Thermal moisture diffusivity (m2 s1 K1)

h θ :

Pressure head (m)

K :

Hydraulic conductivity (m s1)

L :

Height (m)

M :

Mass (kg)

T :

Temperature (°C)

t :

Time (s)

V :

Volume (m3)

w :

Water content (d.b.)

γ w :

Degree of moisture migration

δ :

Thickness (m)

θ :

Volumetric water content (m3 m3)

λ :

Thermal conductivity (W m1 K1)

ρ :

Density (kg m3)

σ :

Surface tension (N m1)

φ :

Degree of thermal migration

ψ :

Matric suction (kPa)

eff:

Effective

h :

Heating

l :

Water

i :

Initial

s :

Saturated

T :

Thermal migration

W :

Moisture migration

References

  1. Yuan J, Chen W, Tan X, Ma W, Zhou Y, Zhao W. An effective thermal conductivity model of rocks considering variable saturation and pore structure: theoretical modelling and experimental validations. Int Commun Heat Mass Transf. 2021;121: 105088. https://doi.org/10.1016/j.icheatmasstransfer.2020.105088.

    Article  Google Scholar 

  2. Huang X, Yao Z, Cai H, Li X, Chen H. Performance evaluation of coaxial borehole heat exchangers considering ground non-uniformity based on analytical solutions. Int J Therm Sci. 2021;170: 107162. https://doi.org/10.1016/j.ijthermalsci.2021.107162.

    Article  Google Scholar 

  3. Zhang N, Zou H, Zhang L, Puppala AJ, Liu S, Cai G. A unified soil thermal conductivity model based on artificial neural network. Int J Therm Sci. 2020;155: 106414. https://doi.org/10.1016/j.ijthermalsci.2020.106414.

    Article  Google Scholar 

  4. Li HF, Chen MQ, Fu BA, Liang B. Evaluation on the thermal and moisture diffusion behavior of sand/bentonite. Appl Therm Eng. 2019;151:55–65. https://doi.org/10.1016/j.applthermaleng.2019.01.100.

    Article  CAS  Google Scholar 

  5. Zhou T, Chen M, Fu B, Liang B, Li Q. Investigation on thermal and moisture migration performance in sand combined with graphite. Appl Therm Eng. 2018;145:212–20. https://doi.org/10.1016/j.applthermaleng.2018.09.038.

    Article  CAS  Google Scholar 

  6. Erol S, François B. Efficiency of various grouting materials for borehole heat exchangers. Appl Therm Eng. 2014;70(1):788–99. https://doi.org/10.1016/j.applthermaleng.2014.05.034.

    Article  CAS  Google Scholar 

  7. Cao D, Shi B, Loheide SP, Gong X, Zhu H-H, Wei G, et al. Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A–DTS) technology. Energy Build. 2018;173:239–51. https://doi.org/10.1016/j.enbuild.2018.01.022.

    Article  Google Scholar 

  8. Lv P, Liu C, Rao Z. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials. Appl Energy. 2016;182:475–87. https://doi.org/10.1016/j.apenergy.2016.08.147

    Article  CAS  Google Scholar 

  9. Cárdenas-Ramírez C, Gómez MA, Jaramillo F, Fernández AG, Cabeza LF. Experimental determination of thermal conductivity of fatty acid binary mixtures and their shape-stabilized composites. Renew Energy. 2021;175:1167–73. https://doi.org/10.1016/j.renene.2021.05.080.

    Article  CAS  Google Scholar 

  10. Zhang N, Yu X, Pradhan A, Puppala AJ. A new generalized soil thermal conductivity model for sand–kaolin clay mixtures using thermo-time domain reflectometry probe test. Acta Geotech. 2017;12(4):739–52. https://doi.org/10.1007/s11440-016-0506-0.

    Article  Google Scholar 

  11. Liang B, Chen M, Fu B, Li H. Investigation on the thermal and flow performances of a vertical spiral-tube ground heat exchanger in sand combined with kaolin additive. Energy Build. 2019;190:235–45. https://doi.org/10.1016/j.enbuild.2019.03.003.

    Article  Google Scholar 

  12. Chen Y, Gao Y, Chen L, Li H, Liu K, Sun B. An experimental investigation of matrix components and grain size influence on the permeability in porous medium containing hydrate. Heat Mass Transf. 2019;55(6):1563–70. https://doi.org/10.1007/s00231-018-02542-5.

    Article  Google Scholar 

  13. Song Y-S, Hong S. Effect of clay minerals on the suction stress of unsaturated soils. Eng Geol. 2020;269: 105571. https://doi.org/10.1016/j.enggeo.2020.105571.

    Article  Google Scholar 

  14. Boari F, Donadio A, Pace B, Schiattone MI, Cantore V. Kaolin improves salinity tolerance, water use efficiency and quality of tomato. Agric Water Manag. 2016;167:29–37. https://doi.org/10.1016/j.agwat.2015.12.021.

    Article  Google Scholar 

  15. Chen M, Chen X, Zhang C, Cui B, Li Z, Zhao D, et al. Kaolin-enhanced superabsorbent composites: synthesis, characterization and swelling behaviors. Polymers. 2021;13(8):1204. https://doi.org/10.3390/polym13081204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim D, Oh S. Relationship between the thermal properties and degree of saturation of cementitious grouts used in vertical borehole heat exchangers. Energy Build. 2019;201:1–9. https://doi.org/10.1016/j.enbuild.2019.07.017.

    Article  Google Scholar 

  17. Li HF, Chen MQ, Liang B, Fu BA. Thermal characteristics in a spiral-tube buried in sand/bentonite/graphite under cooling and heating modes. Exp Heat Transf. 2020;33(6):547–59. https://doi.org/10.1080/08916152.2019.1680580.

    Article  CAS  Google Scholar 

  18. Qu S, Han J, Sun Z, Yin R, Ji R, Chai C. Study of operational strategies for a hybrid solar-geothermal heat pump system. Build Simul. 2019;12(4):697–710. https://doi.org/10.1007/s12273-019-0519-3.

    Article  Google Scholar 

  19. Agrawal K, Misra R, Agrawal G. Improving the thermal performance of ground air heat exchanger system using sand-bentonite (in dry and wet condition) as backfilling material. Renew Energy. 2019;146:2008–23. https://doi.org/10.1016/j.renene.2019.08.044.

    Article  Google Scholar 

  20. Gao Y, Dong S, Wang C, Chen Y, Hu W. Effect of thermal intensity and initial moisture content on heat and moisture transfer in unsaturated soil. Sustain Cities Soc. 2020;55: 102069. https://doi.org/10.1016/j.scs.2020.102069.

    Article  Google Scholar 

  21. Liu X, He M, Wang Y, Zheng B, Li C, Zhu X. Experimental study on heat transfer attenuation due to thermal deformation of horizontal GHEs. Geothermics. 2021;97: 102241. https://doi.org/10.1016/j.geothermics.2021.102241.

    Article  Google Scholar 

  22. Gao H, Shao M. Effects of temperature changes on soil hydraulic properties. Soil Tillage Res. 2015;153:145–54. https://doi.org/10.1016/j.still.2015.05.003.

    Article  Google Scholar 

  23. Ammavajjala R, Moghal A. Effect of fines content on the hysteretic behavior of water retention characteristic curves of reconstituted soils. J Mater Civ Eng. 2020;32(4):04020057. https://doi.org/10.1061/(asce)mt.1943-5533.0003114.

    Article  Google Scholar 

  24. Wen T, Wang P, Shao L, Guo X. Experimental investigations of soil shrinkage characteristics and their effects on the soil water characteristic curve. Eng Geol. 2021;284: 106035. https://doi.org/10.1016/j.enggeo.2021.106035.

    Article  Google Scholar 

  25. Luo Z, Kong J, Shen C, Lu C, Hua G, Zhao Z, et al. Evaluation and application of the modified van Genuchten function for unsaturated porous media. J Hydrol. 2019;571:279–87. https://doi.org/10.1016/j.jhydrol.2019.01.051.

    Article  Google Scholar 

  26. Tian Z, Kool D, Ren T, Horton R, Heitman JL. Approaches for estimating unsaturated soil hydraulic conductivities at various bulk densities with the extended Mualem-van Genuchten model. J Hydrol. 2019;572:719–31. https://doi.org/10.1016/j.jhydrol.2019.03.027.

    Article  Google Scholar 

  27. Mengistu AG, Mavimbela SSW, van Rensburg LD. Characterisation of the soil pore system in relation to its hydraulic functions in two South African aeolian soil groups. South Afr J Plant Soil. 2019;36(2):107–16. https://doi.org/10.1080/02571862.2018.1487594.

    Article  Google Scholar 

  28. Philip JR, DeVries DA. Moisture movement in porous materials under temperature gradient. Trans Am Geophys Union. 1957;38:222–32. https://doi.org/10.1029/TR038i002p00222.

    Article  Google Scholar 

  29. Gao Y, Fan R, Li H, Liu R, Lin X, Guo H, et al. Thermal performance improvement of a horizontal ground-coupled heat exchanger by rainwater harvest. Energy and Build. 2016;110:302–13. https://doi.org/10.1016/j.enbuild.2015.10.030.

    Article  Google Scholar 

  30. Hedayati-Dezfooli M, Leong WH. An experimental study of coupled heat and moisture transfer in soils at high temperature conditions for a medium coarse soil. Int J Heat Mass Transf. 2019;137:372–89. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.131.

    Article  Google Scholar 

  31. Chen H, Ding H, Liu S, Chen X, Wu W, Wang Q. Experimental study on heat and moisture transfer in soil during soil heat charging for solar-soil source heat pump compound system. Appl Therm Eng. 2014;70(1):1018–24. https://doi.org/10.1016/j.applthermaleng.2014.06.030.

    Article  Google Scholar 

  32. Cherati DY, Ghasemi-Fare O. Analyzing transient heat and moisture transport surrounding a heat source in unsaturated porous media using the Green’s function. Geothermics. 2019;81:224–34. https://doi.org/10.1016/j.geothermics.2019.04.012.

    Article  Google Scholar 

  33. Gan G. Dynamic thermal performance of horizontal ground source heat pumps—the impact of coupled heat and moisture transfer. Energy. 2018;152:877–87. https://doi.org/10.1016/j.energy.2018.04.008.

    Article  Google Scholar 

  34. Wang Z, Wang F, Ma Z, Wang X, Wu X. Research of heat and moisture transfer influence on the characteristics of the ground heat pump exchangers in unsaturated soil. Energy Build. 2016;130:140–9. https://doi.org/10.1016/j.enbuild.2016.08.043.

    Article  Google Scholar 

  35. Lemoubou EL, Kamdem Tagne HT, Bogning J, Tonnang H. Thermal, moisture, and solute transport responses effects on unsaturated soil hydraulic parameters estimation. Water Resour Res. 2019;55(12):11225–49. https://doi.org/10.1029/2019wr025542.

    Article  Google Scholar 

  36. Jahangir MH, Ghazvini M, Pourfayaz F, Ahmadi MH, Sharifpur M, Meyer JP. Numerical investigation into mutual effects of soil thermal and isothermal properties on heat and moisture transfer in unsaturated soil applied as thermal storage system. Numerical Heat Transf Part A Appl. 2018;73(7):466–81. https://doi.org/10.1080/10407782.2018.1449518.

    Article  CAS  Google Scholar 

  37. Prakash A, Hazra B. Probabilistic analysis of soil-water characteristic curve using limited data. Appl Math Modell. 2021;89:752–70. https://doi.org/10.1016/j.apm.2020.08.023.

    Article  Google Scholar 

  38. Eyo EU, Ng’ambi S, Abbey SJ. An overview of soil–water characteristic curves of stabilised soils and their influential factors. J King Saud Univ Eng Sci. 2020. https://doi.org/10.1016/j.jksues.2020.07.013.

    Article  Google Scholar 

  39. Liu W, Wang Q, Lin G-C, Xu X-T. Variations of suction and suction stress of unsaturated loess due to changes in lignin content and sample preparation method. J Mountain Sci. 2021;18(8):2168–83. https://doi.org/10.1007/s11629-020-6028-0.

    Article  Google Scholar 

  40. Wu R, Tang Y, Li S, Wang W, Jiang P, Yang G. Study on water characteristic curve and shear characteristics of typical unsaturated silty clay in Shaoxing. Geofluids. 2021;2021:5510535. https://doi.org/10.1155/2021/5510535.

    Article  Google Scholar 

  41. Ying Z, Cui Y-J, Benahmed N, Duc M. Investigating the salinity effect on water retention property and microstructure changes along water retention curves for lime-treated soil. Constr Build Mater. 2021;303: 124564. https://doi.org/10.1016/j.conbuildmat.2021.124564.

    Article  CAS  Google Scholar 

  42. Cao B, Tian Y, Gui R, Liu Y. Experimental study on the effect of key factors on the soil-water characteristic curves of fine-grained tailings. Front Environ Sci. 2021;9:286. https://doi.org/10.3389/fenvs.2021.710986.

    Article  Google Scholar 

  43. Ikechukwu AF, Hassan MM. Assessing the extent of pavement deterioration caused by subgrade volumetric movement through moisture infiltration. Int J Pavement Res Technol. 2021. https://doi.org/10.1007/s42947-021-00044-y.

    Article  Google Scholar 

  44. Chang C-c, Cheng D-h, Qiao X-y. Improving estimation of pore size distribution to predict the soil water retention curve from its particle size distribution. Geoderma. 2019;340:206–12. https://doi.org/10.1016/j.geoderma.2019.01.011.

    Article  Google Scholar 

  45. Fu Y, Horton R, Heitman J. Estimation of soil water retention curves from soil bulk electrical conductivity and water content measurements. Soil Tillage Res. 2021;209: 104948. https://doi.org/10.1016/j.still.2021.104948.

    Article  Google Scholar 

  46. Li X, Zhang Z, Zhang L, Zhang L, Wu L. Combining two methods for the measurement of hydraulic conductivity over a wide suction range. Comput Geotech. 2021;135: 104178. https://doi.org/10.1016/j.compgeo.2021.104178.

    Article  Google Scholar 

  47. Chen L, Ming F, Zhang X, Wei X, Liu Y. Comparison of the hydraulic conductivity between saturated frozen and unsaturated unfrozen soils. Int J Heat Mass Transf. 2021;165: 120718. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120718.

    Article  Google Scholar 

  48. Rudiyanto MB, Shah RM, Setiawan BI, van Genuchten MT. Simple functions for describing soil water retention and the unsaturated hydraulic conductivity from saturation to complete dryness. J Hydrol. 2020;588:125041. https://doi.org/10.1016/j.jhydrol.2020.125041.

    Article  Google Scholar 

  49. Zhai Q, Rahardjo H, Satyanaga A, Zhu Y, Dai G, Zhao X. Estimation of wetting hydraulic conductivity function for unsaturated sandy soil. Eng Geol. 2021;285: 106034. https://doi.org/10.1016/j.enggeo.2021.106034.

    Article  Google Scholar 

  50. Ghanbarian B. Unsaturated hydraulic conductivity in dual-porosity soils: percolation theory. Soil Tillage Res. 2021;212: 105061. https://doi.org/10.1016/j.still.2021.105061.

    Article  Google Scholar 

  51. Mualem Y. New model for predicting hydraulic conductivity of unsaturated porous-media. Water Resour Res. 1976;12:513–22. https://doi.org/10.1029/WR012i003p00513.

    Article  Google Scholar 

  52. Dang M, Chai J, Xu Z, Qin Y, Cao J, Liu F. Soil water characteristic curve test and saturated-unsaturated seepage analysis in Jiangcungou municipal solid waste landfill. China Eng Geol. 2020;264: 105374. https://doi.org/10.1016/j.enggeo.2019.105374.

    Article  Google Scholar 

  53. Li M, Wu Y, Zhao Z. Effect of endothermic reaction mechanisms on the coupled heat and mass transfers in a porous packed bed with Soret and Dufour effects. Int J Heat Mass Transf. 2013;67:164–72. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.004.

    Article  CAS  Google Scholar 

  54. Gan G. Dynamic thermal simulation of horizontal ground heat exchangers for renewable heating and ventilation of buildings. Renew Energy. 2017;103:361–71. https://doi.org/10.1016/j.renene.2016.11.052.

    Article  CAS  Google Scholar 

  55. Hayek M. An efficient analytical model for horizontal infiltration in soils. J Hydrol. 2018;564:1120–32. https://doi.org/10.1016/j.jhydrol.2018.07.058.

    Article  Google Scholar 

  56. Li Z, Chen J, Tang A, Sugimoto M. A novel model of heat-water-air-stress coupling in unsaturated frozen soil. Int J Heat Mass Transf. 2021;175: 121375. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121375.

    Article  Google Scholar 

  57. Pandya S, Sachan A. Effect of matric suction and initial static loading on dynamic behaviour of unsaturated cohesive soil. Int J Geotech Eng. 2018;12(5):438–48. https://doi.org/10.1080/19386362.2017.1295622.

    Article  CAS  Google Scholar 

  58. Liang W-Y, Yan R-T, Xu Y-F, Zhang Q, Tian H-H, Wei C-F. Swelling pressure of compacted expansive soil over a wide suction range. Appl Clay Sci. 2021;203:106018. https://doi.org/10.1016/j.clay.2021.106018.

    Article  CAS  Google Scholar 

  59. Hu W, Li Y, Gou H, Van Asch TWJ, Gao X, Zheng Y, et al. Hydraulic properties of co-seismic landslide deposits around the Wenchuan earthquake epicentre: large-scale column experiments. Eng Geol. 2021;287: 106102. https://doi.org/10.1016/j.enggeo.2021.106102.

    Article  Google Scholar 

  60. Wang C, Li S-Y, He X-J, Chen Q, Zhang H, Liu X-Y. Improved prediction of water retention characteristic based on soil gradation and clay fraction. Geoderma. 2021;404:115293. https://doi.org/10.1016/j.geoderma.2021.115293.

    Article  Google Scholar 

  61. Mendes RM, Marinho FAM. Soil water retention curves for residual soils using traditional methods and MIP. Geotech Geol Eng. 2020;38(5):5167–77. https://doi.org/10.1007/s10706-020-01354-x.

    Article  Google Scholar 

  62. Higashino M, Aso D, Stefan HG. Effects of clay in a sandy soil on saturated/unsaturated pore water flow and dissolved chloride transport from road salt applications. Environ Sci Pollut Res. 2021;28(18):22693–704. https://doi.org/10.1007/s11356-020-11730-y.

    Article  CAS  Google Scholar 

  63. Chen K, Liang F, Wang C. A fractal hydraulic model for water retention and hydraulic conductivity considering adsorption and capillarity. J Hydrol. 2021;602: 126763. https://doi.org/10.1016/j.jhydrol.2021.126763.

    Article  Google Scholar 

  64. Singh D, Mishra AK, Patra S, Mariappan S, Singh N. Near-saturated soil hydraulic conductivity and pore characteristics as influenced by conventional and conservation tillage practices in North-West Himalayan region, India. Int Soil Water Conserv Res. 2021;9(2):249–59. https://doi.org/10.1016/j.iswcr.2021.01.001.

    Article  Google Scholar 

  65. Zhou J, Luo L-H, Yu L-G, Nangulama H. Experimental study about the influence of cyclic load on the hydraulic conductivity of clay. Acta Geotech. 2020;15(12):3357–70. https://doi.org/10.1007/s11440-020-01066-9.

    Article  Google Scholar 

  66. Liang B, Chen M, Guan J. Experimental assessment on the thermal and moisture migration of sand-based materials combined with kaolin and graphite. Heat Mass Transf. 2021. https://doi.org/10.1007/s00231-021-03162-2.

    Article  Google Scholar 

  67. Salilih EM, Abu-Hamdeh NH, Oztop HF. Analysis of double U-tube ground heat exchanger for renewable energy applications with two-region simulation model by combining analytical and numerical techniques. Int Commun Heat Mass Transf. 2021;123: 105144. https://doi.org/10.1016/j.icheatmasstransfer.2021.105144.

    Article  Google Scholar 

  68. Zhang N, Wang Z. Review of soil thermal conductivity and predictive models. Int J Therm Sci. 2017;117:172–83. https://doi.org/10.1016/j.ijthermalsci.2017.03.013.

    Article  Google Scholar 

  69. Wang W, Chen C, Xu W, Li C, Li Y-Z. Experimental research on heat transfer characteristics and temperature rise law of in situ thermal remediation of soil. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10645-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under No. 51376017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiqian Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, B., Chen, M. & Guan, J. Assessment on the thermal and moisture migration of sand-based materials coupled with kaolin additive. J Therm Anal Calorim 147, 10163–10176 (2022). https://doi.org/10.1007/s10973-022-11372-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11372-x

Keywords

Navigation