Skip to main content
Log in

Experimental studies on booster lens thermosyphon solar water heating system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Experimental studies on real conventional and modified thermosyphon (booster lens) solar flat plate collectors have been carried out from 9.00 am to 4.00 pm in open atmosphere. The mass flow rate, instantaneous heat gain and efficiency increase gradually from 9.30 am to 1.30 pm and decreases from 1.30 pm to 4.00 pm. The average mass flow rate obtained by booster lens collector is compared to conventional and is 18.1%. The highest heat gain noticed at 1.30 pm is 375.51 J s−1 and 439.97 J s−1 for real conventional and modified thermosyphon collector, respectively. Experimental outcome exposed that the average heat intensification and thermal performance for modified thermosyphon collector have 24.25% and 25.1% higher than the real conventional one. The experimental nusselt number and friction factor compared with Sieder-Tate and fanning equation and deviation falls with in 7.41% and 14% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A c :

Collector aperture area (m2)

A i :

Inside surface area of the riser tube (m2)

A o :

Outside surface area of the riser tube (m2)

D i :

Inside diameter of riser tube (m)

D o :

Outside diameter of riser tube (m)

f t :

Friction factor

H t :

Total solar radiation (W m−2)

h i :

Average convective heat transfer coefficient (W m−2 oC−1)

L :

Length of the riser tube (m)

m :

Mass flow rate (kg s−1)

Nu:

Nusselt number

Q :

Heat transfer rate (W)

Re:

Reynolds number

T a :

Ambient temperature (oC)

T m :

Bulk mean temperature of fluid in the riser tube (oC)

T in :

Average inlet temperature of water (oC)

T out :

Average outlet temperature of water (oC)

T wo :

Average outside wall surface temperature of riser tube (oC)

ΔP :

Pressure drop (N m−2)

η :

Collector efficiency

BLC:

Booster lens collector

CON:

Conventional collector

PCM:

Phase change material

CPC:

Compound parabolic collector

ρ :

Density of water (kg m−3)

μ :

Dynamic viscosity of water at bulk mean temperature (Ns m−2)

μ w :

Dynamic viscosity at wall temperature (Ns m−2)

ΔP :

Pressure drop of water (N m−2)

τα :

Transmittance–absorptance product (dimensionless)

η :

Collector efficiency (%)

References

  1. Mujuru M, Dube T, Mabizela H, Ntuli N. Evaluating greenhouse gas emission reductions by using solar water heaters: a case of low income households in Ekurhuleni. South Africa Phys Chem Earth. 2020. https://doi.org/10.1016/j.pce.2020.102843.

    Article  Google Scholar 

  2. Naidoo A. The socio-economic impacts of solar water heaters compared across two communities: a case study of Cato Manor. Renew Sustain Energy Rev. 2020. https://doi.org/10.1016/j.rser.2019.109525.

    Article  Google Scholar 

  3. Aguilar F, Crespí-Llorens D, Quiles PV. Environmental benefits and economic feasibility of a photovoltaic assisted heat pump water heater. Sol Egy. 2019;193:20–10.

    Article  Google Scholar 

  4. Urmee T, Walker E, Bahri PA, Baverstock G, Rezvani S, Saman W. Solar water heaters uptake in Australia—Issues and barriers. Sustain Energy Tech Asst. 2018;30:11–2.

    Google Scholar 

  5. Jaisankar S, Ananth J, Thulasi S, Jayasuthakar ST, Sheeba KN. A comprehensive review on solar water heaters. Renew Sustain Energy Rev. 2011;15:3045–55.

    Article  CAS  Google Scholar 

  6. Sadhishkumar S, Balusamy T. Performance improvement in solar water heating systems‖-A review. Renew Sust Energy Rev. 2014;37:191–8.

    Article  Google Scholar 

  7. Jadhav S, Ninawe A, Dange A, Anjikar A. A review on modified solar water heaters. Int J Res Appl Sci Eng Tech. 2018;6:1122–4.

    Article  Google Scholar 

  8. Patel K, Patel P, Patel J. Review of solar water heating systems. Int J Adv Eng Tech. 2012;3:146–53.

    Google Scholar 

  9. Ajeet Pratap S, Singh OP. Thermo-hydraulic performance enhancement of convex-concave natural convection solar air heaters. Sol Energy. 2019;183:146–215.

    Article  Google Scholar 

  10. Tiwari RC, Aswinikumar, Guptha SK, Sootha GD. Thermal performance of Flat plate solar collector manufactured in India, 1991;31:309–5.

  11. Lizama-Tzeca FI, Herrera-Zamoraa DM, Ares-Muzioa O, Gomez-Espinozab VH, Santos-Gonzalezc I, Cetina-Dorantesa M, Vega-Poota AG, Garcia-Valladaresb O, Oskama G. Electrodeposition of selective coatings based on black nickel for flat-plate solar water heaters. Sol Energy. 2019;194:302–8.

    Article  Google Scholar 

  12. Tamimi A. Analysis and design of a novel flat plate solar collector. Int Commun Heat Mass Transf. 1986;13:651–6.

    Article  Google Scholar 

  13. Kanimozhi B, Shinde YN, Bedford SP, Swaroop KK, Kumar SV. Experimental analysis of solar water heater using porous medium with agitator. Mater Today Proc. 2019;16:1204–7.

    Article  Google Scholar 

  14. Garciaa R, Oliveirab SR, Luiz Scalonb V. Thermal efficiency experimental evaluation of solar flat plate collectors when introducing convective barriers. Sol Energy. 2019;182:278–87.

    Article  Google Scholar 

  15. Bhowmik H, Amin R. Efficiency improvement of flat plate solar collector using reflector. Energy Rep. 2017;3:119–24.

    Article  Google Scholar 

  16. Mandal S, Ghosh SK. Experimental investigation of double pass solar water heater by using reflector. Renew Energy. 2020. https://doi.org/10.1016/j.renene.2019.11.160.

    Article  Google Scholar 

  17. Jaisankar S, Radhakrishnan TK, Sheeba KN. Studies on heat transfer and friction factor characteristics of thermosyphon solar water heating system with helical twisted tapes. Energy. 2009;34:1054–110.

    Article  Google Scholar 

  18. Kumar A, Prasad BN. Investigation of twisted tape inserted solar water heater heat transfer, friction factor and thermal performance results. Renew Energy. 2000;19:379–419.

    Article  Google Scholar 

  19. da Silvaa FAS, Dezanc DJ, Pantaleãob AV, Salviano LO. Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater. Appl Therm Eng. 2019. https://doi.org/10.1016/j.applthermaleng.

    Article  Google Scholar 

  20. Kumar A, Layek A. Nusselt number and friction factor correlation of solar air heater having twisted-rib roughness on absorber plate. Renew Energy. 2018. https://doi.org/10.1016/j.renene.

    Article  Google Scholar 

  21. Suresh Isravel R, Raja M, Saravanan S, Vijayan V. Thermal augmentation in parabolic trough collector solar water heater using rings attached twisted tapes. Mater Today. 2019. https://doi.org/10.1016/j.matpr.2019.05.375.

    Article  Google Scholar 

  22. Rajput NS, Shukla DD, Rajput D, Sharm SK. Performance analysis of flat plate solar collector using Al2O3/ distilled water nanofluid: an experimental investigation. Mater Today Proc. 2019;10:52–29.

    Article  Google Scholar 

  23. Mohammad R, Moravej M, Mohammad Hossein D. ‘Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew Egy. 2020;146:2316–413.

    Article  Google Scholar 

  24. Yassen TA, Mokhlif ND, Eleiwi MA. Performance investigation of an integrated solar water heater with corrugated absorber surface for domestic use. Renew Energy. 2019. https://doi.org/10.1016/j.renene.2019.01.114.

    Article  Google Scholar 

  25. Hadjiat MM, Hazmoune M, Ouali S, Gama A, Yaiche M. Design and analysis of a novel ICS solar water heater with CPC reflectors. J Energy Storage. 2018;16:203–7.

    Article  Google Scholar 

  26. Al-Joboory HNS. Comparative experimental investigation of two evacuated tube solar water heaters of different configurations for domestic application of Baghdad- Iraq. Energy Build. 2019. https://doi.org/10.1016/j.enbuild.2019.109437.

    Article  Google Scholar 

  27. Zeyu W, Yanhua D, Yaohua Z, Lili Y, Chuanqi C. Lin Liang, Tengyue Wang, Performance investigation of an integrated collector–storage solar water heater based on lap-joint-type micro-heat pipe arrays. Appl Therm Engg. 2019;153:808–19.

    Article  Google Scholar 

  28. Faddouli A, Labrim H, Fadili S, Habchi A, Hartiti B, Benaissa M, Hajji M, EZ-Zahraouy H, Ntsoenzok E, Benyoussef A. Numerical analysis and performance investigation of new hybrid system integrating concentrated solar flat plate collector with a thermoelectric generator system. Renew Energy. 2019. https://doi.org/10.1016/j.renene.2019.09.130.

    Article  Google Scholar 

  29. Allouhi A, Benzakour Amine M, Buker MS, Kousksou T, Jamil A. Forced-circulation solar water heating system using heat pipe-flat plate collectors: Egy and exergy analysis. Energy. 2019;180:429–514.

    Article  Google Scholar 

  30. Keguang Y, Tong L, Tao H, Jiajie W, Feng K. Performance evaluation of all-glass evacuated tube solar water heater with twist tape inserts using CFD. Energy Proc. 2015;70:332–7.

    Article  Google Scholar 

  31. Garnier C, Muneer T, Currie J. Numerical and empirical evaluation of a novel building integrated collector storage solar water heater. Renew Energy. 2018. https://doi.org/10.1016/j.renene.2018.03.041.

    Article  Google Scholar 

  32. Rout A, Sahoo SS, Thomas S. Risk modeling of domestic solar water Heater using Monte Carlo simulation for east-coastal region of India. Energy. 2018. https://doi.org/10.1016/j.energy.2018.01.018.

    Article  Google Scholar 

  33. Biswakarma S, Roy S, Das B, Debnath BK. Performance analysis of internally helically v-grooved absorber tubes using nanofluid. Thermal Sci Eng Prog. 2020. https://doi.org/10.1016/j.tsep.2020.100538.

    Article  Google Scholar 

  34. Kong W, Wang Z, Li X, Yuan G, Fan J, Perers B, Furbo S. Test method for evaluating and predicting thermal performance of thermosyphon solar domestic hot water system. Appl Thermal Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2018.09.086.

    Article  Google Scholar 

  35. Arnaoutakis N, Milousi M, Papaefthimiou S, Fokaides P, Caouris Y, Souliotis M. Life cycle assessment as a methodological tool for the optimum design of integrated collector storage solar water heaters. Energy. 2019;182:1084–115.

    Article  Google Scholar 

  36. Hadjiat MM, Hazmoune M, Oualia S, Gamab A, Yaiche MR. Design and analysis of a novel ICS solar water heater with CPC reflectors. J Energy Storage. 2018;16:203–7.

    Article  Google Scholar 

  37. Liao Q, Xin MD. Augmentation of convective heat transfer inside tubes with three-dimensional internal extended surfaces and twisted-tape inserts. Chem Eng J. 2000;78:95–10.

    Article  CAS  Google Scholar 

  38. Hottle HC, Whiller A. Evaluation of flat-plate solar collector performance. Trans Conf Use Sol Energy. 1958;2:74–30.

    Google Scholar 

  39. Duffie JA, Beckman WA. Solar engineering of thermal process. New York: Wiley; 1980.

    Google Scholar 

  40. Coleman HW, Steele WG. Experimental and uncertainty analysis for engineers. New York: Wiley; 1989.

    Google Scholar 

  41. ANSI/ASME, Measurement uncertainty, Performance Test Code, 1–1985, 1986.

Download references

Author information

Authors and Affiliations

Authors

Contributions

SJ conducts the experimentation and analyze the literature and draft the article. TS conducts the experimentation and carried out the computation. MA conduct the experimentation and draw graphs and carried out the instrumental error. RK helps to formulate the paper and include the nomenclature.

Corresponding author

Correspondence to S. Jaisankar.

Ethics declarations

Conflict of interest

The authors have no conflict of Interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 72 kb)

Supplementary file2 (XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaisankar, S., SenthilKumar, T., Arulmozhi, M. et al. Experimental studies on booster lens thermosyphon solar water heating system. J Therm Anal Calorim 147, 11289–11299 (2022). https://doi.org/10.1007/s10973-022-11260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11260-4

Keywords

Navigation