Skip to main content
Log in

Optimized mixing chamber length and diameter of a steam ejector for the application of gas turbine power plant: a computational approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ejector is a simple device which is used in gas turbine and steam power plants. It is used to pump or compress a low-pressure fluid with the help of a high-pressure fluid without any moving parts. The performance of an ejector is a function of entrainment ratio (ω) and pressure lift ratio (rp). The work aims to perform a parametric study and propose the optimized geometry parameters of a steam ejector, such as mixing chamber length (Lm) and diameter (Dm), for getting maximum ω and rp. A 3D turbulent model was developed to investigate these geometry parameters. Realizable kε turbulence model was chosen for considering the turbulence effects. Lm was varied from 0.6 to 1.2 m and Dm from 0.1 to 0.14 m. Mach number, temperature, pressure and density profiles inside the steam ejector were estimated and analyzed. It was found that Lm has shown less influence on ω and rp. A minimum Lm of 1 m was required to get a uniform, non-fluctuated and symmetric profile of Mach number, temperature, pressure and density inside the system, especially at the diffuser section. Dm has shown a significant effect on ω, and it increased from 1.12 to 1.64 when Dm was varied from 0.1 to 0.13 m. Any further increase in Dm caused a decrease in ω. From the parametric study, it is concluded that Lm and Dm of 1 m and 0.13 m, respectively, gave a better flow uniformity, non-fluctuated flow and maximum ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

NXP:

Nozzle exit position

CFD:

Computational fluid dynamics

COP:

Coefficient of performance

A t :

Area of nozzle throat (m2)

C :

Specific heat (J kg−1 K−1)

D m :

Diameter of mixing chamber (m)

D t :

Diameter of nozzle throat (m)

k :

Thermal conductivity (W m1 K1)

L m :

Length of mixing chamber (m)

M :

Mach number

m :

Mass flow rate (kg s1)

p :

Pressure (bar)

R:

Gas constant (J kg−1 K−1)

r p :

Pressure ratio

T :

Temperature (K)

u :

Velocity (m s1)

μ t :

Turbulent viscosity (m2 s1)

p:

Primary fluid

s:

Secondary fluid

t:

Nozzle throat

1:

Nozzle exit

2:

Diffuser exit

m:

Mixing chamber

ω :

Entrainment ratio

θ :

Suction chamber convergence angle (°)

µ :

Dynamic viscosity (kg m1 s1)

ρ :

Density (kg m3)

ε :

Rate of dissipation of turbulent energy (m2 s3)

γ :

Ratio of specific heats

References

  1. Keenan JH, Neumann EP, Lustwerk F. A simple air ejector. J Appl Mech-T ASME. 1942;64:75–81.

    Article  Google Scholar 

  2. Munday JT, Bagster DF. A new ejector theory applied to steam jet refrigeration. Ind Eng Chem Process Des Dev. 1997;16:442–9. https://doi.org/10.1021/i260064a003.

    Article  Google Scholar 

  3. Ruangtrakoon N, Aphornratana S. Design of steam ejector in a refrigeration application based on thermodynamic performance analysis. Sustain Energy Technol Assess. 2019;31:369–82. https://doi.org/10.1016/j.seta.2018.12.014.

    Article  Google Scholar 

  4. Huang BJ, Chang JM, Wang CP, Petrenko VA. A 1-D analysis of ejector performance. Int J Refrig. 1999;22(5):354–64. https://doi.org/10.1016/S0140-7007(99)00004-3.

    Article  Google Scholar 

  5. Eames IW. A new prescription for the design of supersonic jet-pumps: the constant rate of momentum change method. Appl Therm Eng. 2009;22(2):121–31. https://doi.org/10.1016/S1359-4311(01)00079-5.

    Article  Google Scholar 

  6. Chandra VV, Ahmed MR. Experimental and computational studies on a steam jet refrigeration system with constant area and variable area ejectors. Energy Convers Manag. 2015;79:377–86. https://doi.org/10.1016/j.enconman.2013.12.035.

    Article  Google Scholar 

  7. Wu H, Liu Z, Han B, Li Y. Numerical investigation of the influences of mixing chamber geometries on steam ejector performance. Desalination. 2015;353:15–20. https://doi.org/10.1016/j.desal.2014.09.002.

    Article  CAS  Google Scholar 

  8. Foroozesh F, Khoshnevis AB, Lakzian E. Investigation on the effects of water steam ejector geometry in the refrigeration systems using entropy generation assessment. J Therm Anal Calorim. 2020;141:1399–411. https://doi.org/10.1007/s10973-019-09128-1.

    Article  CAS  Google Scholar 

  9. Yuan Y, Tan L, Xu Y, Yuan Y. Three-dimensional CFD modelling and simulation on the performance of steam ejector heat pump for dryer section of the paper machine. Vacuum. 2015;122:168–78. https://doi.org/10.1016/j.vacuum.2015.09.016.

    Article  CAS  Google Scholar 

  10. Buttsworth D, Al-Doori G, Sharifi N. Mixing layer effects on the entrainment ratio in steam ejectors through ideal gas computational simulations. Energy. 2016;95:380–92. https://doi.org/10.1016/j.energy.2015.12.027.

    Article  Google Scholar 

  11. Chen H, Lu W. Design of cylindrical mixing chamber ejector according to performance analyses. Energy. 2018;56:32–48. https://doi.org/10.1016/j.energy.2018.09.025.

    Article  CAS  Google Scholar 

  12. Ramesh AS, Sekhar SJ. Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector. Energy. 2018;48:256–68. https://doi.org/10.1016/j.energy.2018.09.010.

    Article  Google Scholar 

  13. Shovon MKB, Raman SK, Suryan A, et al. Performance of ejector refrigeration cycle based on solar energy working with various refrigerants. J Therm Anal Calorim. 2020;141:301–12. https://doi.org/10.1007/s10973-020-09319-1.

    Article  CAS  Google Scholar 

  14. Wu Y, Zhao H, Zhang C, Wang L, Han J. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test. Energy. 2018;151:79–93. https://doi.org/10.1016/j.energy.2018.03.041.

    Article  Google Scholar 

  15. Foroozesh F, Khoshnevis AB, Lakzian E. Improvement of the wet steam ejector performance in a refrigeration cycle via changing the ejector geometry by a novel EEC (Entropy generation, Entrainment ratio, and Coefficient of performance) method. Int J Refrig. 2020;110:248–61. https://doi.org/10.1016/j.ijrefrig.2019.11.006.

    Article  Google Scholar 

  16. Hemidi A, Henry F, Leclaire S, Seynhaeve JM, Bartosiewicz Y. CFD analysis of a supersonic air ejector. Part I: experimental validation of single-phase and two-phase operation. Appl Therm Eng. 2014;29(8–9):1523–31. https://doi.org/10.1016/j.applthermaleng.2008.07.003.

    Article  Google Scholar 

  17. Thongtip T, Aphornratana S. An experimental analysis of the impact of primary nozzle geometries on the ejector performance used in R141b ejector refrigerator. Appl Therm Eng. 2016;110:89–101. https://doi.org/10.1016/j.applthermaleng.2016.08.100.

    Article  CAS  Google Scholar 

  18. Varga S, Oliveira AC, Diaconu B. Influence of geometrical factors on steam ejector performance—a numerical assessment. Int J Refrig. 2009;32(7):1694–701. https://doi.org/10.1016/j.ijrefrig.2009.05.009.

    Article  Google Scholar 

  19. Mohammadi A. An investigation of geometrical factors of multi-stage steam ejectors for air suction. Energy. 2019;180:115808. https://doi.org/10.1016/j.energy.2019.07.138.

    Article  Google Scholar 

  20. Hakkaki-Fard A, Aidoun Z, Ouzzane M. A computational methodology for ejector design and performance maximisation. Energy Convers Manag. 2015;105:1291–302. https://doi.org/10.1016/j.enconman.2015.08.070.

    Article  Google Scholar 

  21. Sheikholeslami M, Jafaryar M, Said Z, Alsabery AI, Babazadeh H, Shafee A. Modification for helical turbulator to augment heat transfer behavior of nanomaterial via numerical approach. Appl Therm Eng. 2021;182:115935. https://doi.org/10.1016/j.applthermaleng.2020.115935.

    Article  Google Scholar 

  22. Sheikholeslami M, Farshad SA, Ebrahimpour Z, Said Z. Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: a review. J Clean Prod. 2021;293: 126119. https://doi.org/10.1016/j.jclepro.2021.126119.

    Article  CAS  Google Scholar 

  23. Dong J, Yu M, Wang W, Song H, Li C, Pan X. Experimental investigation on low-temperature thermal energy driven steam ejector refrigeration system for cooling application. Appl Therm Eng. 2017;123:167–76. https://doi.org/10.1016/j.applthermaleng.2017.05.061.

    Article  Google Scholar 

  24. Al-Shamani AN. Evaluation of solar-assisted absorption refrigeration cycle by using a multi-ejector. J Therm Anal Calorim. 2020;142:1477–81. https://doi.org/10.1007/s10973-020-09560-8.

    Article  CAS  Google Scholar 

  25. Wang L, Yan J, Wang C, Li X. Numerical study on optimization of ejector primary nozzle geometries. Int J Refrig. 2017;76:219–29. https://doi.org/10.1016/j.ijrefrig.2017.02.010.

    Article  CAS  Google Scholar 

  26. Mazzelli F, Little AB, Garimella S, Bartosiewicz Y. Computational and experimental analysis of supersonic air ejector: turbulence modeling and assessment of 3D effects. Int J Heat Fluid Flow. 2015;56:305–16. https://doi.org/10.1016/j.ijheatfluidflow.2015.08.003.

    Article  Google Scholar 

  27. Tsegelskii VG, Akimov MV, Safargaliev TD. Experimental study of the effect the basic geometrical parameter and the active gas nozzle expansion ratio have on the performance characteristics of supersonic gas ejectors fitted with a conical mixing chamber. Therm Eng. 2018;65(1):27–38. https://doi.org/10.1134/S0040601518010081.

    Article  Google Scholar 

  28. Lin C, He M. A numerical study on the supersonic steam ejector use in steam turbine system. Math Probl Eng. 2013;651483:1–9. https://doi.org/10.1155/2013/651483.

    Article  Google Scholar 

  29. Sheikholeslami M, Farshad SA, Said Z. Analyzing entropy and thermal behavior of nanomaterial through solar collector involving new tapes. Int Commun Heat Mass Transf. 2021;123:105190. https://doi.org/10.1016/j.icheatmasstransfer.2021.105190.

    Article  CAS  Google Scholar 

  30. Sheikholeslami M, Farshad SA. Investigation of solar collector system with turbulator considering hybrid nanoparticles. Renew Energy. 2021;171:1128–58. https://doi.org/10.1016/j.renene.2021.02.137.

    Article  CAS  Google Scholar 

  31. Soham J. Design of supersonic ejector using computational fluid dynamics. Master’s thesis. Pilani: Birla Institute of Technology & Science; 2017.

  32. Ramesh AS, Sekhar SS. Analytical and numerical studies of a steam ejector on the effect of nozzle exit position and suction chamber angle to fluid flow and system performance. J Appl Fluid Mech. 2017;10(1):369–78. https://doi.org/10.18869/acadpub.jafm.73.238.26027.

    Article  Google Scholar 

  33. Sparrow EM, Abraham JP, Minkowycz WJ. Flow separation in a diverging conical duct: effect of Reynolds number and divergence angle. Int J Heat Mass Transf. 2009;52(13–14):3079–83. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.010.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the working environment provided by GE India Industrial Private Limited, Bangalore, India-560066, under the Internship program given to the first author of the manuscript (Ref: Mail dated 17th April 2019). The authors also acknowledge the support received by way of proofreading from Dr. M. Raja Vishwanathan, Assistant Professor, Humanities and Social Science Department, NIT Warangal, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandramohan Velayudhan Parvathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakkirala, V., Velayudhan Parvathy, C. Optimized mixing chamber length and diameter of a steam ejector for the application of gas turbine power plant: a computational approach. J Therm Anal Calorim 147, 8881–8894 (2022). https://doi.org/10.1007/s10973-021-11190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11190-7

Keywords

Navigation