Skip to main content
Log in

Investigation of the thermal conductivity of soil subjected to freeze–thaw cycles using the artificial neural network model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In cold regions, a better understanding of soil thermal conductivity is necessary for a variety of earthworks and engineering applications such as ground heat exchanger piles and energy piles, installation of underground power cables, and so on. In this study, the effects of the internal factors of the soil such as water content, dry density, porosity, saturation degree, and the external factors of the soil like freeze–thaw cycles and temperatures were studied on the thermal conductivity (λ) of the sandy soil. The λ values of the soil samples were determined at six different volumetric water contents (0.190, 0.212, 0.230, 0.246, 0.260, and 0.320 m3 m−3) and four frozen temperatures (4 °C, − 7 °C, − 12 °C and − 20 °C) under five different numbers of freeze–thaw cycles (0, 2, 5, 9, and 12). Then, new prediction models based on the internal (the ANN-I model) and both internal and external factors (the ANN-G model) of the soil proposed by artificial neural network (ANN) technology. The developed ANN models were compared with three empirical models (Tortuosity-Parallel model, Farouki model, and de Vries model) to verify their reliability and effectiveness. The results showed that dry density, water content, porosity, saturation degree, and temperature have significant and variable influences on the λ of the soil subjected to repeated freeze–thaw cycles. The ANN-G model provided the highest accuracy in predicting the λ with increasing numbers of freeze–thaw cycles. For frozen sandy soil samples subjected to repeated freeze–thaw cycles, the Tortuosity-Parallel model exhibited the best performance, followed by the Farouki model and the de Vries model with the poorest performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pei W, Yua W, Li S, Zhou J. A new method to model the thermal conductivity of soil-rock media in cold regions: an example from permafrost regions tunnel. Cold Reg Sci Technol. 2013;95:11–8. https://doi.org/10.1016/j.coldregions.2013.08.001.

    Article  Google Scholar 

  2. Chen J, Wen J, Tian H, Zhang T, Yang X, Jia D, Lai X. A study of soil thermal and hydraulic properties and parameterizations for CLM in the SRYR. J Geophysical Res Atmos. 2018;123:8487–99. https://doi.org/10.1029/2017JD028034.

    Article  Google Scholar 

  3. Jiang H, Niu F, Wang E, Ma Q, Cheng L. Study on the thermophysical properties of clay under repeated freezing and thawing. Pure Appl Geophys. 2020;177:5349–66. https://doi.org/10.1007/s00024-020-02544-7.

    Article  Google Scholar 

  4. Li SY, Wang C, Shi LH, Yin N. Statistical characteristics of the thermal conductivity of frozen clay at different water contents. Results Phys. 2019;13: 102179. https://doi.org/10.1016/j.rinp.2019.102179.

    Article  Google Scholar 

  5. Nikolaev IV, Leong WH, Rosen MA. Experimental investigation of soil thermal conductivity over a wide temperature range. Int J Thermophys. 2013;34:1110–29. https://doi.org/10.1007/s10765-013-1456-5.

    Article  CAS  Google Scholar 

  6. Usowicz B, Lipiec J, Usowicz JB, Marczewski W. Effects of aggregate size on soil thermal conductivity: comparison of measured and model-predicted data. Int J Heat Mass Trans. 2013;57:536–41. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.067.

    Article  Google Scholar 

  7. Xu X, Zhang W, Fan C, Li G. Effects of temperature, dry density and water content on the thermal conductivity of Genhe silty clay. Results Phys. 2020;16: 102830. https://doi.org/10.1016/j.rinp.2019.102830.

    Article  Google Scholar 

  8. Zhang N, Yu XB, Pradhan A, Puppala AJ. Effects of particle size and fines content on thermal conductivity of quartz sands. Transp Res Rec. 2015;2510(1):36–43. https://doi.org/10.3141/2510-05.

    Article  Google Scholar 

  9. Zhang MY, Lu JG, Lai YM, Zhang XY. Variation of the thermal conductivity of a silty clay during a freezing-thawing process. Int J Heat Mass Trans. 2018;124:1059–67. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.118.

    Article  Google Scholar 

  10. Zhang M, Bi J, Chen W, Zhang X, Lu J. Evaluation of calculation models for the thermal conductivity of soils. Int Commun Heat Mass Transf. 2018;94:14–23. https://doi.org/10.1016/j.icheatmasstransfer.2018.02.005.

    Article  Google Scholar 

  11. Côté J, Konrad JM. A generalized thermal conductivity model for soils and construction materials. Can Geotech J. 2005;42(2):443–58. https://doi.org/10.1139/t04-106.

    Article  Google Scholar 

  12. de Vries DA. Thermal properties of soils. In: van Wijk WR, editor. Physics of plant environment. New York: Wiley; 1963. p. 210–35.

    Google Scholar 

  13. Farouki OT. Thermal properties of soils, Hanover, N.H.: U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory: 1981a.

  14. Farouki OT. The thermal properties of soils in cold regions. 0165–232X:1981b.

  15. Gangadhara Rao MVBB, Singh DN. A generalized relationship to estimate thermal resistivity of soils. Can Geotech J. 1999;36(4):767–73. https://doi.org/10.1139/t99-037.

    Article  Google Scholar 

  16. Harlan RL, Nixon JF. Ground thermal regime. Chap. 3 in Geotechnical Engineering for Cold Regions, ed. Andersland OB and Anderson DM. New York: McGraw-Hill; 1978.

  17. Johansen O. Thermal conductivity of soils. Ph.D. dissertation, University of Trondheim, Trondheim, Norway. Published by U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, NH; 1975.

  18. Kersten MS. Thermal Properties of Soils. Bulletin 28, Engineering Experiment Station, University of Minnesota, Minneapolis MN; 1949.

  19. Mustamo P, Ronkanen AK, Berglund Ö, Berglund K, Kløve B. Thermal conductivity of unfrozen and partially frozen managed peat soils. Soil Tillage Res. 2019;191:245–55. https://doi.org/10.1016/j.still.2019.02.017.

    Article  Google Scholar 

  20. Qin YH, Zhang JM, Zheng B, Ma W. Experimental study for the compressible behavior of warm and ice-rich frozen soil under the embankment of Qinghai Tibet railroad. Cold Reg Sci Technol. 2009;57:148–53. https://doi.org/10.1016/j.coldregions.2009.02.006.

    Article  Google Scholar 

  21. Zhang X, Zhang M, Pei W, Lu J. Experimental study of the hydro-thermal characteristics and frost heave behavior of a saturated silt within a closed freezing system. Appl Therm Eng. 2018;129:1447–54. https://doi.org/10.1016/j.applthermaleng.2017.10.116.

    Article  Google Scholar 

  22. Zhao X, Zhou G, Jiang X. Measurement of thermal conductivity for frozen soil at temperatures close to 0 °C. Meas. 2019;140:504–10. https://doi.org/10.1016/j.measurement.2019.03.069.

    Article  Google Scholar 

  23. Zhou GQ, Hu K, Zhao XD, Wang JZ, Liang HC, Lu GL. Laboratory investigation on tensile strength characteristics of warm frozen soils. Cold Reg Sci Technol. 2015;113:81–90. https://doi.org/10.1016/j.coldregions.2015.02.003.

    Article  Google Scholar 

  24. Andersland OB, Branko L. Frozen ground engineering. 2nd ed. Hoboken, NJ: Wiley; 2004.

    Google Scholar 

  25. Chen SX. Thermal conductivity of sands. Heat Mass Trans. 2008;44(10):1241–6. https://doi.org/10.1007/s00231-007-0357-1.

    Article  Google Scholar 

  26. Farouki OT. European foundation designs for seasonally frozen ground, U.S. Army Cold Regions Research and Engineering Laboratory Monograph 92–1.1992.

  27. Liu J, Zha F, Xu L, Kang B, Yang C, Feng Q, Zhang W, Zhang J. Strength and microstructure characteristics of cement-soda residue solidified/stabilized zinc contaminated soil subjected to freezing–thawing cycles. Cold Reg Sci Technol. 2020;172: 102992. https://doi.org/10.1016/j.coldregions.2020.102992.

    Article  Google Scholar 

  28. Rui D, Zhai J, Li G, Zhang J, Suzuki T. Field experimental study of the characteristics of heat and water transfer during frost heaving. Cold Reg Sci Technol. 2019;168: 102892. https://doi.org/10.1016/j.coldregions.2019.102892.

    Article  Google Scholar 

  29. Wang P, Zhou G. Frost-heaving pressure in geotechnical engineering materials during freezing process. Int J Min Sci Technol. 2018;28(2):287–96. https://doi.org/10.1016/j.ijmst.2017.06.003.

    Article  Google Scholar 

  30. Low JE, Loveridge FA, Powrie W. Measuring soil thermal properties for use in energy foundation design, Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris. 2013: 3375–3378.

  31. Banks D. An introduction to thermogeology: Ground source heating and cooling. Oxford: Blackwell Publishing Ltd; 2008.

    Book  Google Scholar 

  32. Zarrella A, Emmi G, Zecchin R, Carli MD. An appropriate use of the thermal response test for the design of energy foundation piles with U-tube circuits. Energ buildings. 2017;134:259–70. https://doi.org/10.1016/j.enbuild.2016.10.053.

    Article  Google Scholar 

  33. Zarrella A, Carli MD, Galgaro A. Thermal performance of two types of energy foundation pile: helical pipe and triple U-tube. Appl Therm Eng. 2013;61(3):301–10. https://doi.org/10.1016/j.applthermaleng.2013.08.011.

    Article  Google Scholar 

  34. Zhu C, Lin Y, Fang G. Preparation and thermal properties of microencapsulated stearyl alcohol with silicon dioxide shell as thermal energy storage materials. Appl Therm Eng. 2020;169: 114943. https://doi.org/10.1016/j.applthermaleng.2020.114943.

    Article  CAS  Google Scholar 

  35. Han D, Lougou BG, Xu Y, Shuai Y, Huang X. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage. Appl Energy. 2020;264: 114674. https://doi.org/10.1016/j.apenergy.2020.114674.

    Article  CAS  Google Scholar 

  36. Sani AK, Singh RM, Amis T, Cavarretta I. A review on the performance of geothermal energy pile foundation, its design process and applications. Renew Sust Energ Rev. 2019;106:54–78. https://doi.org/10.1016/j.rser.2019.02.008.

    Article  Google Scholar 

  37. Zhang Y, Zhang QY, Duan K, Yu GY, Jiao YY. Reliability analysis of deep underground research laboratory in Beishan for geological disposal of high-level radioactive waste. Comput Geotech. 2020;118: 103328. https://doi.org/10.1016/j.compgeo.2019.103328.

    Article  Google Scholar 

  38. Urpi L, Rinaldi AP, Rutqvist J, Wiemer S. Fault stability perturbation by thermal pressurization and stress transfer around a deep geological repository in a clay formation. J Geophys Res Solid Earth. 2019;124:8506–18. https://doi.org/10.1029/2019JB017694.

    Article  Google Scholar 

  39. Ma Z, Gamage RP, Rathnaweera T, Kong L. Review of application of molecular dynamic simulations in geological high-level radioactive waste disposal. Appl Clay Sci. 2019;168:436–49. https://doi.org/10.1016/j.clay.2018.11.018.

    Article  CAS  Google Scholar 

  40. Calcara L, Felice GD, Ferrucci F, Marchetti FA. Soil thermal resistivity: innovative measurement system, IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Genova, Italy, 2019; 1–5; https://doi.org/10.1109/EEEIC.2019.8783756.

  41. Klimenta D, Tasić D, Perović B, Klimenta J, Milovanović M, Anđelković L. Eliminating the effect of hot spots on underground power cables using cool pavements. Electr Eng. 2019;101:1295–309. https://doi.org/10.1007/s00202-019-00867-w.

    Article  Google Scholar 

  42. Tarnawski VR, Wagner B. Modeling the thermal conductivity of frozen soils. Cold Reg Sci Technol. 1993;22:19. https://doi.org/10.1016/0165-232X(93)90043-8.

    Article  Google Scholar 

  43. He H, Flerchinger GN, Kojima Y, Dyck M, Lv J. A review and evaluation of 39 thermal conductivity models for frozen soils. Geoderma. 2021;382: 114694. https://doi.org/10.1016/j.geoderma.2020.114694.

    Article  CAS  Google Scholar 

  44. Mickley AS. The thermal movement of moisture in soil. American Institute of Electrical Engineers Transactions. 1949;68:330–5.

    Article  Google Scholar 

  45. Gori F. A theoretical model for predicting the elective thermal conductivity of unsaturated frozen soils. Proceedings of the Fourth International Conference on Permafrost, Fairbanks (Alaska), Alaska. National Academy Press, Washington, D.C. 1983: 363–68.

  46. McCumber MC, Pielke RA. Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model: 1. Soil layer. J Geophys Res Oceans. 1981;86(C10):9929–38.

    Article  Google Scholar 

  47. Shang YH, Niu FJ, Wu XY, Liu MH. A novel refrigerant system to reduce refreezing time of cast-in-place pile foundation in permafrost regions. Appl Therm Eng. 2017;128:1151–8.

    Article  Google Scholar 

  48. Orakoglu ME, Jiankun L, Niu FJ. Experimental and modeling investigation of the thermal conductivity of fiber-reinforced soil subjected to freeze-thaw cycles. Appl Therm Eng. 2016;108:824–32.

    Article  Google Scholar 

  49. Carman P. Fluid flow through granular beds. Chem Eng Res Des. 1937;75(1):32–48.

    Google Scholar 

  50. Zhang Y, Zhou L, Hu Z, Yu Z, Hao S, Lei Z, Xie Y. Prediction of layered thermal conductivity using artificial neural network in order to have better design of ground source heat pump system. Energies. 2018;11:1896. https://doi.org/10.3390/en11071896.

    Article  CAS  Google Scholar 

  51. Maddah H, Ghazvini M, Ahmadi MH, et al. Performance evaluation of a U-shaped heat exchanger containing hybrid Cu/CNTs nanofluids: experimental data and modeling using regression and artificial neural network. J Therm Anal Calorim. 2021;143:1503–21. https://doi.org/10.1007/s10973-020-09882-7.

    Article  CAS  Google Scholar 

  52. Ahmadi MH, Mohseni-Gharyehsafa B, Ghazvini M, et al. Comparing various machine learning approaches in modeling the dynamic viscosity of CuO/water nanofluid. J Therm Anal Calorim. 2020;139:2585–99. https://doi.org/10.1007/s10973-019-08762-z.

    Article  CAS  Google Scholar 

  53. Ahmadi MH, Baghban A, Ghazvini M, et al. An insight into the prediction of TiO2/water nanofluid viscosity through intelligence schemes. J Therm Anal Calorim. 2020;139:2381–94. https://doi.org/10.1007/s10973-019-08636-4.

    Article  CAS  Google Scholar 

  54. Ramezanizadeh M, Alhuyi Nazari M, Ahmadi MH, et al. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J Therm Anal Calorim. 2019;138:827–43. https://doi.org/10.1007/s10973-019-08154-3.

    Article  CAS  Google Scholar 

  55. Nasirzadehroshenin F, Sadeghzadeh M, Khadang A, et al. Modeling of heat transfer performance of carbon nanotube nanofluid in a tube with fixed wall temperature by using ANN–GA. Eur Phys J Plus. 2020;135:217. https://doi.org/10.1140/epjp/s13360-020-00208-y.

    Article  CAS  Google Scholar 

  56. Ghazvini M, Maddah H, Peymanfar R, Ahmadi MH, Kumar R. Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles. Physica A Stat Mech Appl. 2020;551: 124127. https://doi.org/10.1016/j.physa.2019.124127.

    Article  CAS  Google Scholar 

  57. Maddah H, Ghazvini M, Ahmadi MH. Predicting the efficiency of CuO/water nanofluid in heat pipe heat exchanger using neural network. Int Commun Heat Mass Trans. 2019;104:33–40. https://doi.org/10.1016/j.icheatmasstransfer.2019.02.002.

    Article  CAS  Google Scholar 

  58. Ahmadi MH, Nazari MA, Ghasempour R, Madah H, et al. Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods. Colloids Surf A Physicochem Eng Asp. 2018;541:154–64. https://doi.org/10.1016/j.colsurfa.2018.01.030.

    Article  CAS  Google Scholar 

  59. Zarei MJ, Ansari HR, Keshavarz P, et al. Prediction of pool boiling heat transfer coefficient for various nano-refrigerants utilizing artificial neural networks. J Therm Anal Calorim. 2020;139:3757–68. https://doi.org/10.1007/s10973-019-08746-z.

    Article  CAS  Google Scholar 

  60. Arani AAA, Alirezaie A, Kamyab MH, Motallebi SM. Statistical analysis of enriched water heat transfer with various sizes of MgO nanoparticles using artificial neural networks modeling. Physica A Stat Mech Appl. 2020;554: 123950. https://doi.org/10.1016/j.physa.2019.123950.

    Article  CAS  Google Scholar 

  61. Motahar S, Sadri S. Applying artificial neural networks to predict the enhanced thermal conductivity of a phase change material with dispersed oxide nanoparticles. Int J Energy Res. 2021. https://doi.org/10.1002/er.6785.

    Article  Google Scholar 

  62. Bagheri-Esfeh H, Safikhani H, Motahar S. Multi-objective optimization of cooling and heating loads in residential buildings integrated with phase change materials using the artificial neural network and genetic algorithm. J Energy Storage. 2020;32: 101772. https://doi.org/10.1016/j.est.2020.101772.

    Article  Google Scholar 

  63. Zhang T, Wang C, Liu S, Zhang N, Zhang T. Assessment of soil thermal conduction using artificial neural network models. Cold Reg Sci Technol. 2020;169:102907.

    Article  Google Scholar 

  64. Sanuade OA, Adetokunbo P, Oladunjoye MA, Olaojo AA. Predicting moisture content of soil from thermal properties using artificial neural network. Arab J Geosci. 2018;11:566. https://doi.org/10.1007/s12517-018-3917-4.

    Article  Google Scholar 

  65. Sanuade OA, Adesina RB, Amosun JO, Fajana AO, Olaseeni OG. Using artificial neural network to predict dry density of soil from thermal conductivity. RMZ-Mater Geoenviron. 2017;64(3):169–80.

    Article  Google Scholar 

  66. Torabi-Kaveh M, Naseri F, Saneie S, Sarshari B. Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arab J Geosci. 2014;8:2889–97.

    Article  Google Scholar 

  67. Desu RK, Peeketi AR, Annabattula RK. Artificial neural network-based pre- diction of effective thermal conductivity of a granular bed in a gaseous environment. Comput Part Mech. 2019;6(3):503–14.

    Article  Google Scholar 

  68. Singh R, Bhoopal RS, Kumar S. Prediction of effective thermal conductivity of moist porous materials using artificial neural network approach. Build Environ. 2011;46:2603–8.

    Article  Google Scholar 

  69. Zhang N, Zou H, Zhang L, Puppala AJ, Liu S, Cai G. A unified soil thermal conductivity model based on artificial neural network. Int J Therm Sci. 2020;155:106414.

    Article  Google Scholar 

  70. Hiraiwa Y, Kasubuchi T. Temperature dependence of thermal conductivity of soil over a wide range of temperature (5–75°C). Eur J Soil Sci. 2000;51:211–8.

    Article  Google Scholar 

  71. Fei W, Narsilio G, Disfani M. Predicting effective thermal conductivity in sands using an artificial neural network with multiscale microstructural parameters. Int J Heat Mass Trans. 2021;170:120997.

    Article  Google Scholar 

  72. Saglik A, Gungor AG. The Guide of Flexible Superstructure Planning on the Highway. Department of Technical Research, Ministry of Transport, 2000, Ankara (in Turkish).

  73. Rubio CM. A laboratory procedure to determine the thermal properties of silt loam soils based on ASTM D 5334. Appl Ecol Env Res. 2013;1(4):45–8. https://doi.org/10.12691/aees-1-4-2.

    Article  Google Scholar 

  74. Bratlie UHH. An Experimental Study of Thermal Properties of Permafrost Soils. Master Thesis. Norwegian University of Science and Technology, Department of Civil and Environmental Engineering. 2018.

  75. KD2 Pro Thermal Properties Analyzer Operator’s Manual, Decagon Devices, Pullman, Wash., 2008.

  76. Kojima Y, Heitman JL, Noborio K, Ren T, Horton R. Sensitivity analysis of temperature changes for determining thermal properties of partially frozen soil with a dual probe heat pulse sensor. Cold Reg Sci Technol. 2018;151:188–95. https://doi.org/10.1016/j.coldregions.2018.03.022.

    Article  Google Scholar 

  77. Moore DS, Notz WI, Flinger MA. The basic practice of statistics. 6th ed. New York: Freeman and Company; 2013.

    Google Scholar 

  78. Abu-Hamdeh NH. Effect of tillage treatments on soil thermal conductivity for some Jordanian clay loam and loam soils. Soil Till Res. 2000;56:145–51.

    Article  Google Scholar 

  79. Abu-Hamdeh NH, Reeder RC. Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter. Soil Sci Soc Am J. 2000;64:1285–90.

    Article  CAS  Google Scholar 

  80. Usowicz B, Lipiec J, Ferrero A. Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity. Int J Heat Mass Trans. 2006;49:5010–7.

    Article  CAS  Google Scholar 

  81. Smits KM, Sakaki T, Limsuwat A, Illangasekare TH. Thermal conductivity of sands under varying moisture and porosity in drainage-wetting cycles. Vadose Zone J. 2010;9:172–80.

    Article  Google Scholar 

  82. Viklander P. Permeability and volume changes in till due to cyclic freeze/thaw. Can Geotech J. 1998;35(3):471–7.

    Article  Google Scholar 

  83. Zhao Y, Si B. Thermal properties of sandy and peat soils under unfrozen and frozen conditions. Soil Till Res. 2019;189:64–72. https://doi.org/10.1016/j.still.2018.12.026.

    Article  Google Scholar 

  84. Wu X, Ren J, Vanapalli SK. The influence of temperature and water content on the behavior of soils. Int J Geomate. 2020;18(70):106–15. https://doi.org/10.21660/2020.70.9439.

    Article  Google Scholar 

  85. Alogdianakis F, Charmpis DC, Balafas I. Using advanced data analysis to learn from infrastructure databases: The case of the US National Bridge Inventory. Proceedings of the 56th ESReDA Seminar, May 23–24, 2019, Johannes Kepler University, Linz, Austria. 186–197.

  86. Kalkan E, Yarbasi N, Bilici O. The effects of quartzite on the swelling behaviors of compacted clayey soils. Int J Earth Sci. 2020;2(2):92–101.

    Google Scholar 

  87. Barry-Macaulay D, Bouazza A, Singh RM, Wang B, Ranjith PG. Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Eng Geol. 2013;2013(164):131–8.

    Article  Google Scholar 

  88. Lu Y, Yu WB, Hu D, Liu WB. Experimental study on the thermal conductivity of aeolian sand from the Tibetan Plateau. Cold Reg Sci Technol. 2018;146:1–8.

    Article  Google Scholar 

  89. Putkonen J. Soil thermal properties and heat transfer processes near Ny-Alesund, Northwestern Spitsbergen. Svalbard Polar Res. 1998;17:165–79.

    Google Scholar 

  90. Sun H, Liu S, Qin J. Characterizing subzero-temperature thermal properties of seasonally frozen soil in Alpine Forest in the Western Sichuan Province. China JWARP. 2016;8:583–93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Muge Elif Orakoglu Firat and Orhan Atila. The first draft of the manuscript was written by Muge Elif Orakoglu Firat, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Conceptualization, methodology and writing—original draft preparation: Muge Elif Orakoglu Firat; Formal analysis and investigation: Orhan Atila; Writing—review and editing: Muge Elif Orakoglu Firat and Orhan Atila.

Corresponding author

Correspondence to Muge Elif Orakoglu Firat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orakoglu Firat, M.E., Atila, O. Investigation of the thermal conductivity of soil subjected to freeze–thaw cycles using the artificial neural network model. J Therm Anal Calorim 147, 8077–8093 (2022). https://doi.org/10.1007/s10973-021-11081-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11081-x

Keywords

Navigation