Skip to main content
Log in

DTA study and thermodynamic prediction of the solidification interval of boron 500HB abrasion-resistant steel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Special wear-resistant steels are essential in applications with extreme abrasion conditions. Main applications of low-alloyed, weldable abrasion-resistant steels are found in mining, agriculture, and elsewhere. They are normally produced via continuous casting process and then hot rolled into heavy plates of desired thickness and width. This paper focuses on the strand casting part where the solidification interval of boron 500HB steel is studied through DTA heating curves and compared with thermodynamic predictions using Thermo-Calc (TCFE7 and TCFE9 database) and JMatPro with internal database General steel. Liquidus temperatures measured from the second heating curve are in good agreement with the thermodynamic approach using both commercial software. Additionally, the invariant peritectic temperature was experimentally determined and a reasonable agreement is achieved with predictions. All databases revealed a similar solidus temperature if the calculation was performed without boron included. By including 23 ppm of boron into the calculation, only one commercial software predicted the solidus temperature in good agreement with the measured value determined by DTA, the other result differed significantly. This study shows that important variation of the predicted metallurgical length in the strand slab caster exists if the solidus position is estimated using thermodynamic prediction. As the studied samples were taken directly from an industrial plate, a qualitative evaluation of micro-segregation through the cross-section of the thickness was also done and taken into account with thermal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ulewicz R, Szataniak P, Novy F. Fatigue properties of wear resistant martensitic steels. In: MeTal 2014. Proceedings of the MeTal conference; 2014 May 21–23; Brno, Czech Republic. http://metal2014.tanger.cz/files/proceedings/17/reports/2599.pdf . Accessed 22 Apr 2018.

  2. Jokiaho T, Laitinen A, Santa-aho S, Isakov M, Peura P, Saarinen T, Lehtovaara A, Vippola M. Characterization of flame cut heavy steel: Modeling of temperature history and residual stress formation. Metall and Materi Trans B. 2017;48:2891–901. https://doi.org/10.1007/s11663-017-1090-x.

    Article  CAS  Google Scholar 

  3. Ahlblom B, Hansson P, Narström T. Martensitic Structural Steels for Increased Strength and Wear Resistance. Mater Sci Forum. 2007;539–543:4515–20. https://doi.org/10.4028/www.scientific.net/msf.539-543.4515.

    Article  Google Scholar 

  4. SIJ Acroni d.o.o.. SIJ Acroni [Internet]. 2014 [cited 2020 Apr 21]. Available from: https://sij.acroni.si/sl/

  5. SSAB [Internet]. 2020 [cited 2020 Apr 21]. Available from: https://www.ssab.com

  6. Thyssenkrupp AG. Thyssenkrupp steel Europe [Internet]. 2019 [cited 2020 Apr 21]. Available from: https://www.thyssenkrupp-steel.com

  7. Ojala N, Valtonen K, Heino V, Kallio M, Aaltonen J, Siitonen P, Kuokkala VT. Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steels. Wear. 2014;317:225–32. https://doi.org/10.1016/j.wear.2014.06.003.

    Article  CAS  Google Scholar 

  8. Wojciech Ozgowicz S, Opiela M, Grajcar A, Kalinowska-Ozgowicz E, Krukiewicz W. Metallurgical products of microalloy constructional steels. J Achiev Mater Manuf Eng. 2011;44:7–34.

    Google Scholar 

  9. Yuga M, Miura S, Ohmori A. Wear-resistant steel plate and process for producing same. 3 098 331 B1. JP. 2016.

  10. Baker TN. Microalloyed steels. Ironmak Steelmak. 2016;43(4):264–307. https://doi.org/10.1179/1743281215Y.0000000063.

    Article  CAS  Google Scholar 

  11. Gladman T. The physical metallurgy of microalloyed steels. 1st ed. Cambridge: The Institute of Materials, University of Leeds; 1997.

    Google Scholar 

  12. SMS Demag AG. Classification of defects in materials-Standard charts and sample guide. SN960. DE. 2009.

  13. Zhang A, Wang G, Jiao S. Ultrahigh-strength wear-resistant steel plate and method of manufacturing the same. 9,695,487 B2. CN. 2017.

  14. Jiang L, Humphreys AO, Jonas JJ. Effect of silicon on the interaction between recrystallization and precipitation niobium microalloyed steels. ISIJ Int. 2004;44(2):381–7.

    Article  CAS  Google Scholar 

  15. European standards. Hot rolled products of structural steels-Part 5: Technical delivery conditions for structural steels with improved atmospheric corrosion resistance; EN 10025–5:2005.

  16. François H, Bonnevie M. From monometallic to composites and ceramic wear resistant materials: an industrial challenge. In: Proceedings of the International Symposium on Wear Resistant Alloys for the Mining and Processing Industry; 2015 May 4–7; São Paolo, Brazil. CBMM; 2018. p. 19–45. https://www.niobelcon.com/NiobelCon/resources/Volume-3.pdf . Accessed 22 Apr 2020.

  17. Bernetič J, Bradaškja B, Kosec G, Kosec B, Bricelj E. Centreline formation of the Nb(C,N) eutectic in 0.15 % C, 0.0071 % N, 0.022 % Nb, 0.033 % Al and 0.003 % S structural steel. Mater Technol. 2008;42:6,291–294.

  18. Yang S, Gao Y, Xue X, Li B. Influence of titanium on transformation behaviour during continuous cooling of boron microalloyed steels. Ironmak Steelmak. 2018;45(10):959–68.

    Article  CAS  Google Scholar 

  19. Hannula J, Kömi J, Porter DA, Somani MC, Kaijalainen A, Suikkanen P, et al. Effect of boron on the strength and toughness of direct-quenched low-carbon niobium bearing ultra-high-strength martensitic steel. Metall Mater Trans A. 2017;48A:5344–56.

    Article  Google Scholar 

  20. Stalheim DG, Peimao F, Linhao G, Yongqing Z. Metallurgical/Alloy optimization of high strength and wear resistant structural quench and tempered steels. In: TMS, editor(s). HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015: Conference Proceedings. The Minerals, Metals & Materials Society, 2016; p. 995–1001. https://doi.org/https://doi.org/10.1002/9781119223399.ch125

  21. Stalheim D. Metallurgical strategy for optimized production of QT high-strength and abrasion-resistant plate steels. In: AISTech 2019. 2019 AISTech Conference Proceedings; 2019 May 6–8; Pittsburgh, USA. AIST; 2019. p. 1881–1892. http://dx.doi.org/https://doi.org/10.33313/377/192

  22. Ishikawa K, Nakamura H, Homma R, Fujioka M, Hoshino M. Effect of molybdenum content on the combined effect of boron and molybdenum on hardenability of low-carbon boron-added steels. ISIJ Int. 2018;58(3):551–60.

    Article  CAS  Google Scholar 

  23. Leslie WC. The physical metallurgy of steels. 1st ed. Tokyo: McGraw-Hill; 1982.

    Google Scholar 

  24. Hakan Atapek Ş, Erişir E, Gümüş S. Modeling and thermal analysis of solidification in a low alloy steel. J Therm Anal Calorim. 2013;114:179–83. https://doi.org/10.1007/s10973-012-2930-1.

    Article  CAS  Google Scholar 

  25. Wielgosz E, Kargul T. Differential scanning calorimetry study of peritectic steel grades. J Therm Anal Calorim. 2015;119:1547–53. https://doi.org/10.1007/s10973-014-4302-5.

    Article  CAS  Google Scholar 

  26. Karagöz Ş, Atapek S, Yilmaz A. Microstructural and Fractographical Studies on Quenched and Tempered Armor Steels. Mater Test. 2010;52:316–22. https://doi.org/10.3139/120.110134.

    Article  Google Scholar 

  27. Kalup A, Smetana B, Kawuloková M. et al. Liquidus and solidus temperatures and latent heats of melting of steels. J Therm Anal Calorim. 127, 123–128 (2017). https://doi.org/10.1007/s10973-016-5942-4

  28. Luitjohan K. Boron segregation and its effects in advanced high strength steel. Purdue University; 2018.

  29. Sun J, Zhu H, Wang W, Duan Y. Effect of boron segregation on the surface crack of low carbon boron-bearing steel. Results Phys. 2019;13:102153. https://doi.org/10.1016/j.rinp.2019.02.089.

    Article  Google Scholar 

  30. Miettinen J, Vassilev G. Thermodynamic description of ternary Fe-B-X Systems. Part 1: Fe-B-Cr. Arch Metall Mater. 2014;59. Doi: https://doi.org/10.2478/amm-2014-0099.

  31. Blazek K-E, Lanzi O, Yin H. Boron effects on the solidification of steel during continuous casting. Rev Met Paris. 2009;105:609–25. https://doi.org/10.1051/metal:2009005.

    Article  Google Scholar 

  32. Campbell J. The consolidation of metals: the origin of bifilms. J Mater Sci. 2016;51:96–106. https://doi.org/10.1007/s10853-015-9399-9.

    Article  CAS  Google Scholar 

  33. Bradaskja B, Fazarinc M., Klancnik G. Method and device for determining characteristic temperatures of steel taken directly from a tundish. WO2016108762A1. SLO. 2016. https://patentimages.storage.googleapis.com/a9/03/28/8cdd01f811d2d0/WO2016108762A1.pdf Accessed 23 Apr 2020

  34. Boettinger JW, Kattner UR. On DTA curves for the melting and freezing of alloys. Metall Mater Trans A. 2002;33A:1779–94.

    Article  CAS  Google Scholar 

  35. Klančnik U, Habjan J, Klančnik G, Medved J. Thermal analysis of indefinite chill cast iron modified with ferrovanadium and ferrotungsten. J Therm Anal Calorim. 2017;127:71–8. https://doi.org/10.1007/s10973-016-5434-6.

    Article  CAS  Google Scholar 

  36. ISO Standards. Metallic Materials, Conversion of hardness values; ISO 18265.

  37. Grye K, Smetana B, Žaludová M, Michalek K, Klus P, Tkadlečková M, et al. Determination of the solidus and liquidus temperatures of the real-system grades with dynamic thermal-analysis methods. Mater Technol. 2013;47(5):569–75.

    Google Scholar 

  38. Presoly P, Pierer R, Bernhard C. Identification of defect prone peritectic steel grades by analyzing high-temperature phase transformations. Metall and Mat Trans A. 2013;44A:5377–88. https://doi.org/10.1007/s11661-013-1671-5.

    Article  CAS  Google Scholar 

  39. Durand-Charre M. Microstructure of Steels and Cast Irons. Berlin: Springer-Verlag; 2003.

    Google Scholar 

  40. Lage MG, Silva ALV. Evaluating segregation in HSLA steels using computational thermodynamics. J mater res technol. 2015;4(4):353–8. https://doi.org/10.1016/j.jmrt.2015.06.002.

    Article  CAS  Google Scholar 

  41. Dhindaw BK, Antonsson T, Fredriksson H, et al. Characterization of the peritectic reaction in medium-alloy steel through microsegregation and heat-of-transformation studies. Metall Mater Trans A. 2004;35:2869–79. https://doi.org/10.1007/s11661-004-0235-0.

    Article  Google Scholar 

  42. Banaschik R, Brätz O, Henkel K-M. Systematic expansion of the microstructural characterization of ferritic weld. Prakt Metallogr-PR M. 2017;54:669–83.

    Article  Google Scholar 

  43. Samuels LE. Light microscopy of carbon steels. 2nd ed. Ohio: ASM International; 2003.

    Google Scholar 

  44. ASTM E45–18a, Standard Test Methods for Determining the Inclusion Content of Steel, ASTM International, West Conshohocken, PA, 2018. Doi: https://doi.org/10.1520/E0045-18A.

Download references

Acknowledgements

This research was made as a part of the ČMRLJ research project co-financed by the Republic of Slovenia and the European Union under the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grega Klančnik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klančnik, G., Foder, J., Jan, P. et al. DTA study and thermodynamic prediction of the solidification interval of boron 500HB abrasion-resistant steel. J Therm Anal Calorim 147, 1999–2011 (2022). https://doi.org/10.1007/s10973-021-10628-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10628-2

Keywords

Navigation