Skip to main content
Log in

Flame retardancy, thermal decomposition and mechanical properties of epoxy resin modified with copper N, N’-piperazine (bismethylene phosphonate)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A metal–organic phosphonate, i.e., copper N, N’-piperazine (bismethylene phosphonate) (CuPB) was synthesized and utilized to modify epoxy resin (EP). The flame retardancy, thermal decomposition and mechanical properties of EP/CuPB composites are overall evaluated, and the mechanism is tentatively discussed. The results reveal that EP containing 3.0 wt% CuPB (EP/CuPB-3) passes UL-94 V-0 grade with an increased limiting oxygen index of 28.5%. The peak heat release rate, total heat release, total smoke release and peak CO production rate of EP/CuPB-3 in cone calorimeter test are, respectively, reduced by 43.5%, 28.0%, 37.3% and 51.9%, compared to that of pure EP. Besides, a decreased mass-loss rate (16.2% min−1) and an increased char yield (26.8%) of EP/CuPB-3 in the thermogravimetric analysis are achieved as a result of the char-promotion function of CuPB. Satisfactorily, the thermal resistance of EP/CuPB composites is slightly improved with an increased glass transition temperature, and the mechanical properties including tensile and impact strengths are not much affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jiang S, Tang G, Chen J, Huang Z, Hu Y. Biobased polyelectrolyte multilayer-coated hollow mesoporous silica as a green flame retardant for epoxy resin. J Hazard Mater. 2018;342:689–97.

    Article  CAS  PubMed  Google Scholar 

  2. Hu X, Yang H, Jiang Y, He H, Liu H, Huang H, et al. Facile synthesis of a novel transparent hyperbranched phosphorous/nitrogen-containing flame retardant and its application in reducing the fire hazard of epoxy resin. J Hazard Mater. 2019;379:120793.

    Article  CAS  PubMed  Google Scholar 

  3. Luo Q, Yuan Y, Dong C, Huang H, Liu S, Zhao J. Highly effective flame retardancy of a novel DPPA-based curing agent for DGEBA epoxy resin. Ind Eng Chem Res. 2016;55(41):10880–8.

    Article  CAS  Google Scholar 

  4. Yang G, Wu W, Wang Y, Jiao Y, Lu L, Qu H, et al. Synthesis of a novel phosphazene-based flame retardant with active amine groups and its application in reducing the fire hazard of Epoxy Resin. J Hazard Mater. 2019;366:78–87.

    Article  CAS  PubMed  Google Scholar 

  5. Luo QQ, Sun YL, Yu B, Li CP, Song JL, Tan DX, et al. Synthesis of a novel reactive type flame retardant composed of phenophosphazine ring and maleimide for epoxy resin. Polym Degrad Stab. 2019;165:137–44.

    Article  CAS  Google Scholar 

  6. Tamura K, Ohyama S, Umeyama K, Kitazawa T, Yamagishi A. Preparation and properties of halogen-free flame-retardant layered silicate-polyamide 66 nanocomposites. Appl Clay Sci. 2016;126:107–12.

    Article  CAS  Google Scholar 

  7. Rakotomalala M, Wagner S, Doring M. Recent Developments in halogen free flame retardants for epoxy resins for electrical and electronic applications. Materials. 2010;3(8):4300–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tan Y, Shao Z, Chen X, Long J, Chen L, Wang Y. Novel multifunctional organic–inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin. Acs Appl Mater Inter. 2015;7(32):17919–28.

    Article  CAS  Google Scholar 

  9. Qiu Y, Liu Z, Qian L, Hao J. Pyrolysis and flame retardant behavior of a novel compound with multiple phosphaphenanthrene groups in epoxy thermosets. J Anal Appl Pyrolysis. 2017;127:23–30.

    Article  CAS  Google Scholar 

  10. Sudhakara P, Kannan P, Obireddy K, Varada RA. Organophosphorus and DGEBA resins containing clay nanocomposites: flame retardant, thermal, and mechanical properties. J Mater Sci. 2011;46(8):2778–88.

    Article  CAS  Google Scholar 

  11. Wang X, Hu Y, Song L, Yang H, Xing W, Lu H. Synthesis and characterization of a DOPO-substitued organophosphorus oligomer and its application in flame retardant epoxy resins. Prog Org Coat. 2011;71(1):72–82.

    Article  CAS  Google Scholar 

  12. Ma S, Liu X, Jiang Y, Fan L, Feng J, Zhu J. Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid. Sci China Chem. 2014;57(3):379–88.

    Article  CAS  Google Scholar 

  13. Wang C, Shieh J. Phosphorus-containing epoxy resin for an electronic application. J Appl Polym Sci. 2015;73(3):353–61.

    Article  Google Scholar 

  14. Yang S, Wang J, Huo S, Cheng L, Wang M. Preparation and flame retardancy of an intumescent flame-retardant epoxy resin system constructed by multiple flame-retardant compositions containing phosphorus and nitrogen heterocycle. Polym Degrad Stab. 2015;119:251–9.

    Article  CAS  Google Scholar 

  15. Zhang Y, Yu B, Wang B, Liew KM, Song L, Wang C, et al. Highly Effective P-P Synergy of a Novel DOPO-Based Flame Retardant for Epoxy Resin. Ind Eng Chem Res. 2017;56(5):1245–55.

    Article  CAS  Google Scholar 

  16. Chi Z, Guo Z, Xu Z, Zhang M, Li M, Shang L, et al. A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: synthesis, flame-retardant behavior and mechanism. Polym Degrad Stab. 2020;176:109151.

    Article  CAS  Google Scholar 

  17. Jin E, Chung Y. Combustion characteristics of Pinus rigida specimens treated with mixed phosphorus-nitrogen additives. J Ind Eng Chem. 2016;36:74–9.

    Article  CAS  Google Scholar 

  18. Feng YZ, He CG, Wen YF, Ye YS, Zhou XP, Xie XL, et al. Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. J Hazard Mater. 2018;346:140–51.

    Article  CAS  PubMed  Google Scholar 

  19. Li A, Mao P, Liang B. The effect of a novel phosphorus-nitrogen reactive flame retardant curing agent on the performance of epoxy resin. J Macromol Sci A. 2019;56:1–10.

    Article  Google Scholar 

  20. Liu L, Zhang Y, Li L, Wang Z. Microencapsulated ammonium polyphosphate with epoxy resin shell: preparation, characterization, and application in EP system. Polym Adv Technol. 2011;22(12):2403–8.

    Article  Google Scholar 

  21. Zhu Z, Wang L, Dong L. Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin. Polym Degrad Stab. 2019;162:129–37.

    Article  CAS  Google Scholar 

  22. Liu L, Xu Y, Xu M, Li Z, Hu Y, Li B. Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins. Compos Part B Eng. 2019;167:422–33.

    Article  CAS  Google Scholar 

  23. Sun Z, Hou Y, Hu Y, Hu W. Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin. Mater Chem Phys. 2018;214:154–64.

    Article  CAS  Google Scholar 

  24. Liu Y, Cao Z, Zhang Y, Fang Z. Synthesis of Cerium N-Morpholinomethylphosphonic Acid and Its Flame Retardant Application in High Density Polyethylene. Ind Eng Chem Res. 2013;52(15):5334–40.

    Article  CAS  Google Scholar 

  25. Cai Y, Guo Z, Fang Z, Cao Z. Effects of layered lanthanum phenylphosphonate on flame retardancy of glass-fiber reinforced poly(ethylene terephthalate) nanocomposites. Appl Clay Sci. 2013;77–78:10–7.

    Article  Google Scholar 

  26. Hou Y, Hu W, Gui Z, Hu Y. A novel Co(II)-based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy. Composites Sci Technol. 2017;152:231–42.

    Article  CAS  Google Scholar 

  27. Hou Y, Hu W, Gui Z, Hu Y. Preparation of metal-organic frameworks and their application as flame retardants for polystyrene. Ind Eng Chem Res. 2017;56(8):2036–45.

    Article  CAS  Google Scholar 

  28. Wang J, Qian L, Xu B, Xi W, Liu X. Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant application in epoxy resin. Polym Degrad Stab. 2015;122:8–17.

    Article  CAS  Google Scholar 

  29. Ma S, Hou Y, Xiao Y, Chu F, Cai T, Hu W, et al. Metal-organic framework@polyaniline nanoarchitecture for improved fire safety and mechanical performance of epoxy resin. Mater Chem Phys. 2020;247:122875.

    Article  CAS  Google Scholar 

  30. Wang J, Yuan B, Mu X, Feng X, Tai Q, Hu Y. Two-dimensional metal phenylphosphonates as novel flame retardants for polystyrene. Ind Eng Chem Res. 2017;56(25):7192–206.

    Article  CAS  Google Scholar 

  31. Zhou T, Wu T, Xiang H, Li Z, Xu Z, Kong Q, et al. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through synergistic effect of zirconium phenylphosphate and POSS. J Therm Anal Calorim. 2019;135(4):2117–24.

    Article  CAS  Google Scholar 

  32. Zhu M, Liu L, Wang Z. Mesoporous silica via self-assembly of nano zinc amino-tris-(methylenephosphonate) exhibiting reduced fire hazards and improved impact toughness in epoxy resin. J Hazard Mater. 2020;392:122343.

    Article  CAS  PubMed  Google Scholar 

  33. Groves JA, Wright PA, Lightfoot P. Two closely related lanthanum phosphonate frameworks formed by anion-directed linking of inorganic chains. Inorg Chem. 2005;44(6):1736–9.

    Article  CAS  PubMed  Google Scholar 

  34. Alhendawi H, Brunet E, Payán ER, Shurrab N, Juanes O, Idhair S, et al. A new layered zirconium biphosphonate framework covalently pillared with N, N’-piperazinebis(methylene) moiety: synthesis and characterization. J Porous Mater. 2013;20(5):1189–94.

    Article  CAS  Google Scholar 

  35. Farrokhi A, Jafarpour M, Najafzade R. Phosphonate-based Metal Organic Frameworks as Robust Heterogeneous Catalysts for TBHP Oxidation of Benzylic Alcohols. Catal Lett. 2017;147(7):1714–21.

    Article  CAS  Google Scholar 

  36. Rao W, Liao W, Wang H, Zhao H, Wang Y. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. J Hazard Mater. 2018;360:651–60.

    Article  CAS  PubMed  Google Scholar 

  37. Villemin D, Moreau B, Elbilali A, Didi M-A, Kaid Mh, Jaffrès P-A. Green Synthesis of Poly(aminomethylenephosphonic) Acids. Phosphorus, Sulfur, and Silicon and the Related Elements. 2010;185(12):2511–9.

    Article  CAS  Google Scholar 

  38. Cai W, Wang J, Pan Y, Guo W, Mu X, Feng X, et al. Mussel-inspired functionalization of electrochemically exfoliated graphene: Based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane. J Hazard Mater. 2018;352:57–69.

    Article  CAS  PubMed  Google Scholar 

  39. Serre C, Groves JA, Lightfoot P, Slawin AMZ, Wright PA, Stock N, et al. Synthesis, Structure and Properties of Related Microporous N, N‘-Piperazinebismethylenephosphonates of Aluminum and Titanium. Chem Mater. 2006;18(6):1451–7.

    Article  CAS  Google Scholar 

  40. Hayashi H, Hudson M. Reaction of the phenyiphosphonate anion with the layered basic copper(II) nitrate [Cu2(OH)3NO3]. J Mater Chem. 1995;5:115–9.

    Article  CAS  Google Scholar 

  41. Chen X, Zhang X, Wang W, Wang Y, Jiao C. Fire-safe agent integrated with oyster shell and melamine polyphosphate for thermoplastic polyurethane. Polym Adv Technol. 2019;30(7):1576–88.

    Article  CAS  Google Scholar 

  42. Wang W, Chen X, Gu Y, Jiao C. Synergistic fire safety effect between nano-CuO and ammonium polyphosphate in thermoplastic polyurethane elastomer. J Therm Anal Calorim. 2018;131(3):3175–83.

    Article  CAS  Google Scholar 

  43. Chen X, Wang W, Li S, Jiao C. Fire safety improvement of para-aramid fiber in thermoplastic polyurethane elastomer. J Hazard Mater. 2017;324(Part B):789–96.

    Article  CAS  PubMed  Google Scholar 

  44. Cross MS, Cusack PA, Hornsby PR. Effects of tin additives on the flammability and smoke emission characteristics of halogen-free ethylene-vinyl acetate copolymer. Polym Degrad Stab. 2003;79(2):309–18.

    Article  CAS  Google Scholar 

  45. Nazaré S, Kandola B, Horrocks AR. Use of cone calorimetry to quantify the burning hazard of apparel fabrics. Fire Mater. 2002;26(4–5):191–9.

    Article  Google Scholar 

  46. Chen X, Wang W, Jiao C. A recycled environmental friendly flame retardant by modifying para-aramid fiber with phosphorus acid for thermoplastic polyurethane elastomer. J Hazard Mater. 2017;331:257–64.

    Article  CAS  PubMed  Google Scholar 

  47. Chen X, Wang W, Jiao C. para-Aramid fiber modified by melamine polyphosphate and its flame retardancy on thermoplastic polyurethane elastomer. Rsc Adv. 2017;7(84):53172–80.

    Article  CAS  Google Scholar 

  48. Wang W, Wang Z. Epoxy resin/tin ethylenediamine tetra-methylene phosphonate composites with simultaneous improvement of flame retardancy and smoke suppression. Polym Adv Technol. 2020;31(11):2775–88.

    Article  CAS  Google Scholar 

  49. Cai W, Feng X, Wang B, Hu W, Yuan B, Hong N, et al. A novel strategy to simultaneously electrochemically prepare and functionalize graphene with a multifunctional flame retardant. Chem Eng J. 2017;316:514–24.

    Article  CAS  Google Scholar 

  50. Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8(4):235–46.

    Article  CAS  PubMed  Google Scholar 

  51. Wang J, Zhang D, Zhang Y, Cai W, Yao C, Hu Y, et al. Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and HCN) generation and fire hazard of thermoplastic polyurethane. J Hazard Mater. 2019;362:482–94.

    Article  CAS  PubMed  Google Scholar 

  52. Kong Q, Wu T, Zhang J, Wang D. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos Sci Technol. 2018;154:136–44.

    Article  CAS  Google Scholar 

  53. Liu L, Wang Z. Facile synthesis of a novel magnesium amino-tris-(methylenephosphonate)-reduced graphene oxide hybrid and its high performance in mechanical strength, thermal stability, smoke suppression and flame retardancy in phenolic foam. J Hazard Mater. 2018;357:89–99.

    Article  CAS  PubMed  Google Scholar 

  54. Feng Y, Hu J, Xue Y, He C, Zhou X, Xie X, et al. Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene. J Mater Chem A. 2017;5(26):13544–56.

    Article  CAS  Google Scholar 

  55. Xu Z, Deng N, Yan L, Chu Z. Functionalized multiwalled carbon nanotubes with monocomponent intumescent flame retardant for reducing the flammability and smoke emission characteristics of epoxy resins. Polym Adv Technol. 2018;29(12):3002–13.

    Article  CAS  Google Scholar 

  56. Costes L, Laoutid F, Dumazert L, Lopez-cuesta J-M, Brohez S, Delvosalle C, et al. Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid). Polym Degrad Stab. 2015;119:217–27.

    Article  CAS  Google Scholar 

  57. Braun U, Schartel B. Flame Retardancy Mechanisms of Aluminium Phosphinate in Combination with Melamine Cyanurate in Glass-Fibre-Reinforced Poly(1,4-butylene terephthalate). Macromol Mater Eng. 2008;293(3):206–17.

    Article  CAS  Google Scholar 

  58. Xu Y, Chen L, Rao W, Qi M, Guo D, Liao W, et al. Latent curing epoxy system with excellent thermal stability, flame retardance and dielectric property. Chem Eng J. 2018;347:223–32.

    Article  CAS  Google Scholar 

  59. Chen X, Wang W, Jiao C. In situ synthesis of flame retardant organic-inorganic hybrids by molten blending method based on thermoplastic polyurethane elastomer and polybutyl titanate. Rsc Adv. 2016;6(95):92276–84.

    Article  CAS  Google Scholar 

  60. Feng Y, Wang B, Wang F, Zhao Y, Liu C, Chen J, et al. Thermal degradation mechanism and kinetics of polycarbonate/silica nanocomposites. Polym Degrad Stab. 2014;107:129–38.

    Article  CAS  Google Scholar 

  61. Wan J, Gan B, Li C, Molina-Aldareguia J, Li Z, Wang X, et al. A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties. J Mater Chem A. 2015;3(43):21907–21.

    Article  CAS  Google Scholar 

  62. Fang F, Ran S, Fang Z, Song P, Wang H. Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water. Compos Part B Eng. 2019;165:406–16.

    Article  CAS  Google Scholar 

  63. Jiao J, Sun X, Pinnavaia TJ. Reinforcement of a Rubbery Epoxy Polymer by Mesostructured Silica and Organosilica with Wormhole Framework Structures. Adv Funct Mater. 2008;18(7):1067–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21975185).

Funding

This work was financially supported by the National Natural Science Foundation of China (21975185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengzhou Wang.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, Z. Flame retardancy, thermal decomposition and mechanical properties of epoxy resin modified with copper N, N’-piperazine (bismethylene phosphonate). J Therm Anal Calorim 147, 2155–2169 (2022). https://doi.org/10.1007/s10973-021-10592-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10592-x

Keywords

Navigation