Skip to main content
Log in

Biomass gasification process integration with Stirling engine, solid oxide fuel cell, and multi-effect distillation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Today, the use of a variety of energy with the approach of maximizing the efficiency of energy systems is inevitable regarding the increasing trend of energy demand in the world. Process integration reduces the number of equipment required and energy consumption. In this paper, an integrated structure is developed that includes a solid oxide fuel cell (SOFC), a Stirling engine, an organic Rankine cycle (ORC), and a multi-effect distillation using biomass gasification. This integrated structure produces 3103 kW net power, 2.773 kg s−1 desalinated water, and 3.908 kg s−1 hot water by receiving 1000 kg h−1 of biomass. Total electrical and total exergy efficiencies of the integrated system were obtained as 62.88% and 51.56%, respectively. The SOFC and ORC cycles energy efficiencies obtained 53.19 and 22.29%, respectively. The SOFC unit and ORC system exergy efficiencies were calculated by 58.09% and 50.77%, respectively. The largest contribution of the exergy destruction rate occurs in the solid oxide fuel cell and the heat exchangers, accounting for 37.31% and 30.43%. In the performed parametric analysis, the effect of moisture content of gasifier input fuel on the performance of the system was evaluated. One of the most important results is the increase of the total electrical efficiency of the system to 70.81% in case of the increase of moisture to 40 vol%. The maximum amount of net generated power and SOFC generated power occur at 25 vol% moisture content of gasifier input fuel.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

SOFC:

Solid oxide fuel cell

SOEC:

Solid oxide electrolyzer cell

LNG:

Liquefied natural gas

CHHP:

Combined heat, hydrogen and power

SRK:

Soave–Redlich–Kwong equation

RKS-BM:

Boston Mathias alpha function

MED:

Multi-effect distillation

HHV:

High heating value

LHV:

Lower heating value

PFD:

Process flow diagram

C i :

Compressor i

HXi :

Heat exchangers i

CCi :

Combustion chamber i

R i :

Reformer i

T i :

Turbine i

Sepi :

Separator i

Regi :

Regeneration i

P i :

Pump i

\(E_{\text{O}}\) :

Overall empirical factor

\(F_{\text{O}}\) :

Overall Stirling engine powered system efficiency

\(E_{\text{S}}\) :

Thermodynamic efficiency

\(F_{\text{E}}\) :

Empirical factor

\(E_{\text{H}}\) :

Heat source efficiency

\(E_{\text{M}}\) :

Mechanical efficiency

\(K_{\text{C}}\) :

Stirling coefficient

\(E_{\text{BT}}\) :

Brake thermal efficiency

\(q_{\text{in}}\) :

Heat input or useful energy (W)

\(R\), \(R_{\text{u}}\) :

Gas constant, 8.314 (J mol−1 K−1)

\(n_{\text{e}}\) :

Moles number of electron transferred

\(F\) :

Faraday constant, 96488.5 (°C mol−1)

\(P_{\text{i}}^{*}\) :

Reaction site partial pressure of species i (bar)

\(P_{\text{i}}^{0}\) :

Bulk partial pressure of species i (bar)

\(j\) :

Current density (A cm−2)

\(j_{0}\) :

Exchange current density (A cm−2)

\(D_{\text{i}}^{\text{eff}}\) :

Effective diffusion coefficient of species i (cm2 s−1)

\(U_{\text{f}}\) :

Fuel utilization coefficient

\(T\) :

Temperature (K)

\(V_{\text{I}}\) :

Ideal voltage (V)

\(P_{{}}^{{}}\) :

Total pressure (bar)

\(P_{\text{i}}\) :

Partial pressure of species i (bar)

\(P_{0}\) :

Standard pressure, 1 (atm)

\(R_{\text{S}}\) :

Shift reaction rate (mol m−3 s−1)

\(R_{{{\text{H}}_{2} }}\) :

Reforming reaction rate

\(A_{\text{S}}\) :

Specific area (1/m)

\(K_{{}}\) :

Reaction rate constant (kmol kg cat s−1) (kPa)

\(A_{\text{cell}}\) :

Active area of each cell, (cm2)

\(K_{i}\) :

Equilibrium constants

\(G^{0}_{\text{T}}\) :

Gibbs free energy (kJ kmol−1)

\(\tilde{h}^{o}_{{{\text{f}},298}}\) :

Enthalpy of formation (kJ kg−1)

\(C_{\text{p}}\) :

Specific heat capacity at constant pressure (kJ kg−1)

\(g\) :

Gravitational acceleration (9.806 m s−2)

\(s_{0}\) :

Specific entropy at reference state (kJ kg−1 °C)

\(T_{0}\) :

Temperature of the dead state (K)

U :

Overall heat transfer coefficient (W m−2 °C)

s :

Entropy (kJ/kg °C)

\(\dot{W}\) :

Work rate (kW)

x i :

Mole fraction of component i

I :

Irreversibility (kW)

h :

Enthalpy (kJ kg−1)

G :

Gibbs free energy (kW)

ex:

Specific flow exergy (kJ kg−1)

\(\delta_{{}}\) :

Thickness (cm)

\(\gamma\) :

Pre-exponential factor of anode or cathode (A cm−2)

\(\gamma_{\text{i}}\) :

Activity coefficient of ith component

\(j_{0}\) :

Exchange current density (A cm−2)

\(\sigma_{{}}\) :

Ionic or electronic conductivity (1 Ω−1 cm−1)

\(\eta_{\text{act}}\) :

Activation loss (V)

\(\eta_{\text{ohmic}}\) :

Ohmic loss (V)

\(\eta_{\text{conc}}\) :

Concentration loss (V)

η :

Efficiency

\(\varepsilon\) :

Exergy efficiency

Σ:

Summation sign

\(\int {}\) :

Integration sign

Δ:

Difference operator

cat:

Cathode

an:

Anode

e:

Electron

act:

Activation

m:

H atoms substitution formula

O:

O atoms substitution formula

q:

N atoms substitution formula

r:

S atoms substitution formula

ch:

Chemical

ph:

Physical

in:

Inlet

Q:

Heat

References

  1. Pachauri S. Renewables 2012 global status report; 2012.

  2. Acar C, Dincer I. Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrogen Energy. 2014;39(1):1–12.

    CAS  Google Scholar 

  3. Safarian S, Unnthorsson R, Richter C. Performance analysis and environmental assessment of small-scale waste biomass gasification integrated CHP in Iceland. Energy. 2020;197:117268.

    CAS  Google Scholar 

  4. Ebrahimi A, Ghorbani B, Ziabasharhagh M. Pinch and sensitivity analyses of hydrogen liquefaction process in a hybridized system of biomass gasification plant, and cryogenic air separation cycle. J Clean Prod. 2020;258:120548. https://doi.org/10.1016/j.jclepro.2020.120548.

    Article  CAS  Google Scholar 

  5. Xiang Y, Cai L, Guan Y, Liu W, He T, Li J. Study on the biomass-based integrated gasification combined cycle with negative CO2 emissions under different temperatures and pressures. Energy. 2019;179:571–80. https://doi.org/10.1016/j.energy.2019.05.011.

    Article  CAS  Google Scholar 

  6. Situmorang YA, Zhao Z, Yoshida A, Abudula A, Guan G. Small-scale biomass gasification systems for power generation (< 200 kW class): a review. Renew Sustain Energy Rev. 2020;117:109486.

    CAS  Google Scholar 

  7. Ali S, Sørensen K, Nielsen MP. Modeling a novel combined solid oxide electrolysis cell (SOEC)—biomass gasification renewable methanol production system. Renew Energy. 2020;154:1025–34. https://doi.org/10.1016/j.renene.2019.12.108.

    Article  CAS  Google Scholar 

  8. Ebrahimi A, Ziabasharhagh M. Energy and exergy analyses of a novel integrated process configuration for tri-generation heat, power and liquefied natural gas based on biomass gasification. Energy Convers Manag. 2020;209:112624.

    CAS  Google Scholar 

  9. Wu H, Liu Q, Bai Z, Xie G, Zheng J, Su B. Thermodynamics analysis of a novel steam/air biomass gasification combined cooling, heating and power system with solar energy. Appl Therm Eng. 2020;164:114494. https://doi.org/10.1016/j.applthermaleng.2019.114494.

    Article  CAS  Google Scholar 

  10. Ishaq H, Islam S, Dincer I, Yilbas BS. Development and performance investigation of a biomass gasification based integrated system with thermoelectric generators. J Clean Prod. 2020;256:120625. https://doi.org/10.1016/j.jclepro.2020.120625.

    Article  CAS  Google Scholar 

  11. Adamu MH, Zeng X, Zhang J, Wang F, Xu G. Property of drying, pyrolysis, gasification, and combustion tested by a micro fluidized bed reaction analyzer for adapting to the biomass two-stage gasification process. Fuel. 2020;264:116827.

    Google Scholar 

  12. Al-Nouss A, McKay G, Al-Ansari T. Management: a comparison of steam and oxygen fed biomass gasification through a techno-economic-environmental study. Energy Convers Manag. 2020;208:112612.

    CAS  Google Scholar 

  13. Rahimi MJ, Hamedi MH, Amidpour M, Livani E. Technoeconomic evaluation of a gasification plant: modeling, experiment and software development. Waste Biomass Valorization. 2020;25:1–26.

    Google Scholar 

  14. Rahimi M, Hamedi M, Amidpour M. Thermodynamic and economic evaluation of a novel configuration for sustainable production of power and freshwater based on biomass gasification. Energy Syst. 2019. https://doi.org/10.1007/s12667-019-00346-y.

    Article  Google Scholar 

  15. Rahimi M, Hamedi MH, Amidpour M. Thermodynamic simulation and economic modeling and optimization‎ of a multi generation system partially fed with synthetic gas from‎ gasification plant. Gas Process J. 2017;5(2):49–68.

    Google Scholar 

  16. Radenahmad N, Azad AT, Saghir M, Taweekun J, Bakar MSA, Reza MS, et al. A review on biomass derived syngas for SOFC based combined heat and power application. Renew Sustain Energy Rev. 2019;119:109560.

    Google Scholar 

  17. Kumar P, Singh O. Thermoeconomic analysis of SOFC-GT-VARS-ORC combined power and cooling system. Int J Hydrogen Energy. 2019;44(50):27575–86.

    CAS  Google Scholar 

  18. Perna A, Minutillo M, Jannelli E, Cigolotti V, Nam S, Han J. Design and performance assessment of a combined heat, hydrogen and power (CHHP) system based on ammonia-fueled SOFC. Appl Energy. 2018;231:1216–29.

    CAS  Google Scholar 

  19. Huerta GV, Jordán JÁ, Dragon M, Leites K, Kabelac S. Exergy analysis of the diesel pre-reforming solid oxide fuel cell system with anode off-gas recycling in the SchIBZ project. Part I: modeling and validation. Int J Hydrogen Energy. 2018;43(34):16684–93.

    Google Scholar 

  20. Ahmadi S, Ghaebi H, Shokri A. A comprehensive thermodynamic analysis of a novel CHP system based on SOFC and APC cycles. Energy. 2019;186:115899.

    CAS  Google Scholar 

  21. Bessekon Y, Zielke P, Wulff AC, Hagen A. Simulation of a SOFC/Battery powered vehicle. Int J Hydrogen Energy. 2019;44(3):1905–18.

    CAS  Google Scholar 

  22. Inac S, Unverdi SO, Midilli A. A parametric study on thermodynamic performance of a SOFC oriented hybrid energy system. Int J Hydrogen Energy. 2019;44(20):10043–58.

    CAS  Google Scholar 

  23. Jabari F, Nazari-heris M, Mohammadi-ivatloo B, Asadi S, Abapour M. A solar dish Stirling engine combined humidification-dehumidification desalination cycle for cleaner production of cool, pure water, and power in hot and humid regions. Sustain Energy Technol Assess. 2020;37:100642.

    Google Scholar 

  24. Marefati M, Mehrpooya M, Mousavi SA. Introducing an integrated SOFC, linear Fresnel solar field, Stirling engine and steam turbine combined cooling, heating and power process. Int J Hydrogen Energy. 2019;44(57):30256–79.

    CAS  Google Scholar 

  25. Sulzer G. Verfahren zur Erzeugung von Arbeit aus Warme. Swiss Patent. 1950;129:269599.

    Google Scholar 

  26. Liu M, Zhang X, Yang K, Ma Y, Yan J. Optimization and comparison on supercritical CO2 power cycles integrated within coal-fired power plants considering the hot and cold end characteristics. Energy Convers Manag. 2019;195:854–65.

    CAS  Google Scholar 

  27. Zhu Z, Chen Y, Wu J, Zheng S, Zhao W. Performance study on s-CO2 power cycle with oxygen fired fuel of s-water gasification of coal. Energy Convers Manag. 2019;199:112058.

    CAS  Google Scholar 

  28. Behzadi A, Habibollahzade A, Zare V, Ashjaee M. Multi-objective optimization of a hybrid biomass-based SOFC/GT/double effect absorption chiller/RO desalination system with CO2 recycle. Energy Convers Manag. 2019;181:302–18.

    CAS  Google Scholar 

  29. Gholamian E, Hanafizadeh P, Habibollahzade A, Ahmadi P. Evolutionary based multi-criteria optimization of an integrated energy system with SOFC, gas turbine, and hydrogen production via electrolysis. Int J Hydrogen Energy. 2018;43(33):16201–162014.

    CAS  Google Scholar 

  30. Behzadi A, Gholamian E, Houshfar E, Ashjaee M, Habibollahzade A. Thermoeconomic analysis of a hybrid PVT solar system integrated with double effect absorption chiller for cooling/hydrogen production. Energy Equip Syst. 2018;6(4):413–27.

    Google Scholar 

  31. Shariati Niasar M, Amidpour M, Ghorbani B, Rahimi M-J, Mehrpooya M, Hamedi M-H. Superstructure of cogeneration of power, heating, cooling and liquid fuels using gasification of feedstock with primary material of coal for employing in LNG process. Gas Process J. 2017;5(1):1–23.

    Google Scholar 

  32. Mehrpooya M. Conceptual design and energy analysis of novel integrated liquefied natural gas and fuel cell electrochemical power plant processes. Energy. 2016;111:468–83.

    CAS  Google Scholar 

  33. Melgar A, Pérez JF, Laget H, Horillo A. Thermochemical equilibrium modelling of a gasifying process. Energy Convers Manag. 2007;48(1):59–67.

    CAS  Google Scholar 

  34. Basu P. Biomass gasification and pyrolysis: practical design and theory. Boca Raton: Academic Press; 2010.

    Google Scholar 

  35. Ruggiero M, Manfrida G. An equilibrium model for biomass gasification processes. Renew Energy. 1999;16(1–4):1106–9.

    CAS  Google Scholar 

  36. Zainal Z, Ali R, Lean C, Seetharamu K. Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers Manag. 2001;42(12):1499–515.

    CAS  Google Scholar 

  37. Ghorbani B, Mehrpooya M, Shokri K. Developing an integrated structure for simultaneous generation of power and liquid CO2 using parabolic solar collectors, solid oxide fuel cell, and post-combustion CO2 separation unit. Appl Therm Eng. 2020;179:115687.

    CAS  Google Scholar 

  38. Ghorbani B, Shirmohammadi R, Mehrpooya M, Mafi M. Applying an integrated trigeneration incorporating hybrid energy systems for natural gas liquefaction. Energy. 2018;149:848–64.

    CAS  Google Scholar 

  39. Mehrpooya M, Ghorbani B, Abedi H. Biodiesel production integrated with glycerol steam reforming process, solid oxide fuel cell (SOFC) power plant. Energy Convers Manag. 2020;206:112467.

    CAS  Google Scholar 

  40. Kongtragool B, Wongwises S. Investigation on power output of the gamma-configuration low temperature differential Stirling engines. Renewable Energy. 2005;30(3):465–76.

    Google Scholar 

  41. Reader GT, Hooper C. Stirling engines. London: Cambridge University Press; 1983.

    Google Scholar 

  42. Ghorbani B, Shirmohammadi R, Amidpour M, Inzoli F, Rocco M. Design and thermoeconomic analysis of a multi-effect desalination unit equipped with a cryogenic refrigeration system. Energy Convers Manag. 2019;202:112208.

    Google Scholar 

  43. Niasar MS, Ghorbani B, Amidpour M, Hayati R. Developing a hybrid integrated structure of natural gas conversion to liquid fuels, absorption refrigeration cycle and multi effect desalination (exergy and economic analysis). Energy. 2019;189:116162.

    CAS  Google Scholar 

  44. Ghorbani B, Mehrpooya M, Mousavi SA. Hybrid molten carbonate fuel cell power plant and multiple-effect desalination system. J Clean Prod. 2019;220:1039–51.

    CAS  Google Scholar 

  45. Tan H, Sun N, Zhao Q, Li Y. An ejector-enhanced re-liquefaction process (EERP) for liquid ethylene vessels. Int J Energy Res. 2017;41(5):658–72.

    CAS  Google Scholar 

  46. Rahimi M, Hamedi M, Amidpour M. Thermodynamic, economic and case study of synthesis gas using the biomass gasification reactor in distributed generation systems. Mod Mech Eng. 2019;19(6):1417–28.

    Google Scholar 

  47. Zaz A. Performance and characteristics of a biomass gasifier system. Cardiff: University of Wales; 1996.

    Google Scholar 

  48. Mehrpooya M, Bahnamiri FK, Moosavian SA. Energy analysis and economic evaluation of a new developed integrated process configuration to produce power, hydrogen, and heat. J Clean Prod. 2019;239:118042.

    CAS  Google Scholar 

  49. Zhao F, Virkar AV. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. J Power Sources. 2005;141(1):79–95.

    CAS  Google Scholar 

  50. Ebrahimi A, Meratizaman M, Reyhani HA, Pourali O, Amidpour M. Energetic, exergetic and economic assessment of oxygen production from two columns cryogenic air separation unit. Energy. 2015;90:1298–316.

    CAS  Google Scholar 

  51. Ebrahimi A, Ghorbani B, Lohrasbi H, Ziabasharhagh M. Novel integrated structure using solar parabolic dish collectors for liquid nitrogen production on offshore gas platforms (exergy and economic analysis). Sustain Energy Technol Assess. 2020;37:100606.

    Google Scholar 

  52. Ghorbani B, Ebrahimi A, Moradi M, Ziabasharhagh M. Energy, exergy and sensitivity analyses of a novel hybrid structure for generation of Bio-Liquefied natural Gas, desalinated water and power using solar photovoltaic and geothermal source. Energy Convers Manag. 2020;222:113215.

    CAS  Google Scholar 

  53. https://folk.ntnu.no/skoge/software/matlab-hysis-link/.

  54. Szargut J, Morris DR, Steward FR. Energy analysis of thermal, chemical, and metallurgical processes. New York: Hemisphere Publishing; 1988.

    Google Scholar 

  55. Mehrpooya M, Ghorbani B, Mousavi SA. Integrated power generation cycle (Kalina cycle) with auxiliary heater and PCM energy storage. Energy Convers Manag. 2018;177:453–67.

    CAS  Google Scholar 

  56. Pellegrini LF, de Oliveira Jr S. Exergy analysis of sugarcane bagasse gasification. Energy. 2007;32(4):314–27.

    CAS  Google Scholar 

  57. Ghorbani B, Ebrahimi A, Rooholamini S, Ziabasharhagh M. Pinch and exergy evaluation of Kalina/Rankine/gas/steam combined power cycles for tri-generation of power, cooling and hot water using liquefied natural gas regasification. Energy Convers Manag. 2020;223:113328.

    CAS  Google Scholar 

  58. Ghorbani B, Mehrpooya M, Rooholamini S. Novel integrated structure of carbon dioxide liquefaction energy storage system using solar energy. J Energy Storage. 2020;31:101641.

    Google Scholar 

  59. Ghorbani B, Mehrpooya M, Sadeghzadeh M. Process development of a solar-assisted multi-production plant: Power, cooling, and hydrogen. Int J Hydrogen Energy; 2020.

  60. Aasadnia M, Mehrpooya M, Ghorbani B. A novel integrated structure for hydrogen purification using the cryogenic method. J Clean Prod. 2020;278:123872.

    Google Scholar 

  61. Mehrpooya M, Dehghani H, Moosavian SA. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system. J Power Sources. 2016;306:107–23.

    CAS  Google Scholar 

  62. Karamarkovic R, Karamarkovic V. Energy and exergy analysis of biomass gasification at different temperatures. Energy. 2010;35(2):537–49.

    CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

BG: Supervision, Conceptualization, Methodology, Investigation, Software, Validation, Original draft. AE: Conceptualization, Methodology, Investigation, Writing—original draft, Software, Validation. MZ: Conceptualization, Methodology, Methodology. MJR: Methodology, Investigation, Writing—original draft, Software, Validation.

Corresponding author

Correspondence to Bahram Ghorbani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, A., Ghorbani, B., Ziabasharhagh, M. et al. Biomass gasification process integration with Stirling engine, solid oxide fuel cell, and multi-effect distillation. J Therm Anal Calorim 145, 1283–1302 (2021). https://doi.org/10.1007/s10973-020-10314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10314-9

Keywords

Navigation