Skip to main content
Log in

Experimental analysis and exergetic assessment of the solar air collector with delta winglet vortex generators and baffles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To increase the efficiency of solar air collectors (SACs), the combined effects of baffles and delta winglet vortex generator (DWLVG) on the performance of SAC have been investigated. An experimental setup has been made, and numerical simulation is carried out in Ansys Fluent. The numerical investigation is validated by the experimental study and focused on the number of baffles as well as the number and the height of DWLVG. The results show that the SAC with no baffles and DWLVG has the lowest efficiency with the maximum value of 13%, while for SAC with six baffles and three pairs of DWLVG, the efficiency reaches up to 20%. The exergy analysis of three cases, SAC without baffles and DWLVG, SAC with six baffles without DWLVG, and SAC with six baffles and three pairs of DWLVG, shows that the maximum exergy efficiency of the SAC is 30.44% and occurs when the height ratio and the number of DWLVG pairs are 0.5 and 3. The results show that for SAC with six baffles and three pairs of DWLVG, the energy and exergy efficiency improve 7.4% and 12% on an average basis compared to the typical flat plate SAC, respectively. This improvement in thermal and exergy efficiency is due to the implementation of DWLVG which produces more turbulence and eliminates the vortices generated at the corners of SAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

\(A_{\text{c}}\) :

Aperture area of the collector (m2)

\(C_{1}\) :

Constant function

\(C_{2}\) :

Constant

\(C_{1\epsilon }\) :

Constant

\(C_{3\epsilon }\) :

Degree to which \(\epsilon\) is affected by the buoyancy

\(C_{\mu }\) :

Constant

\(C_{\text{p}}\) :

Specific heat capacity of top glass cover (J kg−1 K−1)

\(C_{{{\text{p}}_{\text{air}} }}\) :

Specific heat capacity of air (J kg−1 K−1)

\(\dot{E}\) :

Energy rate (W)

\({\dot{\rm{E}}}{\rm{x}}\) :

Exergy rate (W)

\({\dot{\rm{E}}}{\rm{x}}_{\text{dest}}\) :

Rate of irreversibility or exergy destruction (W)

\(G_{\text{k}}\) :

Generation of turbulence kinetic energy

\(G_{\text{b}}\) :

Generation of turbulence kinetic energy due to buoyancy

\(g_{\text{i}}\) :

Component of the gravitational vector

\(I\) :

Effective solar irradiation over the surface of the collector (W m−2)

\(k\) :

Turbulent kinetic energy

\(\dot{m}_{\text{air}}\) :

Mass flow rate of air

\(M\) :

Mass (kg)

\(P\) :

Fluid pressure (N m−2)

\({ \Pr }_{\text{t}}\) :

Turbulent Prandtl number for energy

\(q_{\text{out,k}}\) :

Energy flux leaving the surface

\(q_{\text{in,k}}\) :

Energy flux incident on the surface from the surroundings

\(\dot{Q}_{\text{s}}\) :

Useful heat rate (W)

\(R\) :

Universal gas constant (J kg−1 K−1)

\({\text{Re}}\) :

Reynolds number

\(s\) :

Entropy (J kg−1 K−1)

\(S\) :

Modulus of the mean rate-of-strain tensor

\(S_{\text{k}}\) :

User-defined source terms

\(S_{\epsilon}\) :

User-defined source terms

T :

Periphery temperature

\(u\) :

Velocity component in corresponding direction (m s−1)

\(x\) :

Characteristic of length (m)

\(Y_{\text{M}}\) :

Contribution of the fluctuating dilatation

\(\alpha\) :

Transparent cover transmittance

\(\beta\) :

Coefficient of thermal expansion

\(\gamma\) :

Absorb plate absorption rate

\(\epsilon\) :

Rate of dissipation of turbulent kinetic energy

\(\epsilon_{\text{c}}\) :

Emissivity of heat absorber plate

\(\epsilon_{\text{g}}\) :

Emissivity of top glass cover

\(\zeta\) :

Strain tensor

\(\eta_{\text{e}}\) :

Thermal efficiency

\(\eta_{\text{ex}}\) :

Exergy efficiency

\(\lambda\) :

Thermal conductivity coefficient of glass cover (W m−1 K−1)

\(\mu\) :

Viscosity (kg m−1 s−1)

\(\mu_{\text{t}}\) :

Turbulent (or eddy) viscosity

\(\rho\) :

Density of top glass cover

\(\sigma\) :

Boltzmann’s constant

\(\sigma_{\text{k}}\) :

Prandtl numbers for \(k\)

\(\sigma_{\epsilon }\) :

Prandtl numbers for \(\epsilon\)

\(\psi\) :

Specific exergy (J kg−1)

DWLVG:

Delta winglet vortex generator

e:

Environment

FVM:

Finite volume method

f:

Fluid

in:

Inlet

out:

Outlet

s:

Sun

sol:

solar

SAC:

Solar air collector

VG:

Vortex generator

References

  1. Barhoumi EM, Okonkwo PC, Zghaibeh M, Belgacem IB, Alkanhal TA, Abo-Khalil AG, Tlili I. Renewable energy resources and workforce case study Saudi Arabia: review and recommendations. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09189-2.

    Article  Google Scholar 

  2. Hosseini SE, Butler B. Design and analyses of a hybrid concentrated photovoltaic thermal system integrated with an organic Rankine cycle for hydrogen production. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09556-4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ahmadi MH, Mohammadi O, Sadeghzadeh M, Pourfayaz F, Kumar R, Lorenzini G. Exergy and economic analyses of solar chimney in Iran climate: Tehran, Semnan, and Bandar Abbas. Math Model Eng Prob. 2020;7(1):55–67.

    Google Scholar 

  4. Sadi M, Arabkoohsar A. Modelling and analyses of a hybrid solar concentrating-waste incineration power plant. J Clean Prod. 2019;216:570–84.

    Article  Google Scholar 

  5. Sivaram PM, Mande AB, Premalatha M, Arunagiri A. Investigation on a building-integrated passive solar energy technology for air ventilation, clean water and power. Energy Convers Manag. 2020;211:112739.

    Article  Google Scholar 

  6. Wang L, Man Y, Shi Sh, Wang Z. Application of solar air collector and floor air supply heating system in winter. Procedia Eng. 2017;205:3623–3629.

    Article  Google Scholar 

  7. Buker MS. Building integrated solar thermal collectors for heating & cooling applications. University of Nottingham; 2015.

  8. Belusko M. Development of a roof integrated solar air collector. University of South Australia; 2005.

  9. Piotr Matuszewski MS. Optimization of solar air collector. Aalborg: Rasmus Lund Jensen; 2010.

    Google Scholar 

  10. Al-Khawajah MF. The effect of using transverse partitioning and reflection on single and counter flow solar air heater using wire mesh as an absorber. Institute of Graduate Studies and Research, Eastern Mediterranean University; 2011.

  11. Sreekumar A, Vijayakumar KP. Development of solar air heaters & thermal energy storage system for drying applications in food processing industries. Cochin University of Science and Technology, India; 2007.

  12. Liang CH, Zhang XS, Li XW, Zhu X. Study on the performance of a solar assisted air source heat pump system for building heating. Energy Build. 2011;43:2188–96.

    Article  Google Scholar 

  13. Gao L, Bai H, Mao S. Potential application of glazed transpired collectors to spaceheating in cold climates. Energy Convers Manag. 2014;77:690–9.

    Article  Google Scholar 

  14. Karim MA, Hawlader M. Development of solar air collectors for drying applications. Energy Convers Manag. 2004;45:329–44.

    Article  Google Scholar 

  15. Fudholi A, Sopian K, Ruslan MH, Alghoul MA, Sulaiman MY. Review of solar dryers for agricultural and marine products. Renew Sustain Energy Rev. 2010;14(1):1–30.

    Article  Google Scholar 

  16. Sudhakar P, Cheralathan M. Thermal performance enhancement of solar air collector using a novel V-groove absorber plate with pin-fins for drying agricultural products: an experimental stud. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08952-9.

    Article  Google Scholar 

  17. Hamid MOA, Zhang B. Field synergy analyses for turbulent heat transfer on ribs roughened solar air heater. Renew Energy. 2015;83:1007–19.

    Article  Google Scholar 

  18. Thinsurat K, Bao H, Ma Z, Roskilly AP. Performance study of solar photovoltaic-thermal collector for domestic hotwater use and thermochemical sorption seasonal storage. Energy Convers Manag. 2019;180:1068–84.

    Article  CAS  Google Scholar 

  19. Mehrotra RC, Varma SN, Singh BK. Physico-chemical behaviour of hydrated aluminium oxides and associated clay minerals occurring around Pipra, district Sidhi, India. J Therm Anal. 1979;16:453–62.

    Article  CAS  Google Scholar 

  20. Sun C, Liu Y, Duan C, Zheng Y, Chang H, Shu S. A mathematical model to investigate on the thermal performance of a flat plate solar air collector and its experimental verification. Energy Convers Manag. 2016;115:43–51.

    Article  Google Scholar 

  21. Poongavanam GK, Panchabikesan K, Leo AJD, Ramalingam V. Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-corrugated absorber plate. Renew Energy. 2018;127:213–29.

    Article  Google Scholar 

  22. El-Khawajah MF, Aldabbagh LBY, Egelioglu F. The effect of using transverse fins on a double pass flow solar air heater using wire mesh as an absorber. Sol Energy. 2011;85(7):1479–87.

    Article  CAS  Google Scholar 

  23. Qasem NA, Arnous MN, Zubair SM. A comprehensive thermal-hydraulic assessment of solar flat-plate air heaters. Energy Convers Manag. 2020;215:112922.

    Article  Google Scholar 

  24. Dezan DJ, Rocha AD, Ferreira WG. Parametric sensitivity analyses and optimisation of a solar air heater with multiple rows of longitudinal vortex generators. Appl Energy. 2020;263:114556.

    Article  Google Scholar 

  25. Depaiwa N, Chompookham T, Promvonge P. Thermal enhancement in a solar air heater channel using rectangular winglet vortex generators. In: PEA-AIT international conference on energy and sustainable development: issues and strategies (ESD 2010), 2–4 June 2010. The Empress Hotel, Chiang Mai; 2010.

  26. Ucar A, Inallı M. Thermal and exergy analyses of solar air collectors with passive augmentation techniques. Int Commun Heat Mass Transf. 2006;33(10):1281–90.

    Article  Google Scholar 

  27. Mohammadi A, Ahmadi MH, Bidi M, Joda F, Valero A, Uson S. Exergy analyses of a combined cooling, heating and power system integrated with wind turbine and compressed air energy storage system. Energy Convers Manag. 2017;131:69–78.

    Article  Google Scholar 

  28. Ahmadi MH, Mehrpooya M, Pourfayaz F. Thermodynamic and exergy analyses and optimization of a transcritical CO2 power cycle driven by geothermal energy with liquefied natural gas as its heat sink. Appl Therm Eng. 2016;109:640–52.

    Article  CAS  Google Scholar 

  29. İrfan Kurtbas AD. Efficiency and exergy analyses of a new solar air heater. Renew Energy. 2004;29(9):1489–501.

    Article  Google Scholar 

  30. Esen H. Experimental energy and exergy analyses of a double-flow solar air heater having different obstacles on absorber plates. Build Environ. 2008;43:1046–54.

    Article  Google Scholar 

  31. Song K. Interaction of longitudinal vortices and the effect on fluid flow and heat transfer. Lanzhou: School of Mechanical Engineering, Lanzhou Jiaotong University; 2015.

    Book  Google Scholar 

  32. Ahmed HE, Mohammed HA, Yusoff MZ. An overview on heat transfer augmentation using vortex generators and nanofluids: approaches and applications. Renew Sustain Energy Rev. 2012;16:5951–93.

    Article  CAS  Google Scholar 

  33. Wu JM, Tao WQ. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: verification of field synergy principle. Int J Heat Mass Transf. 2008;51(5–6):1179–91.

    Article  CAS  Google Scholar 

  34. Eiamsa-Ard S, Promvonge P. Influence of double-sided delta-wing tape insert with alternate-axes on flow and heat transfer characteristics in a heat exchanger tube. Chin J Chem Eng. 2011;19(3):410–42.

    Article  CAS  Google Scholar 

  35. Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput Fluids. 1995;24(3):227–38.

    Article  Google Scholar 

  36. Srivastava RK. Proceedings of all india seminar on advances in product development (APD-2006). New Age International; 2006.

  37. Modest MF. Radiative heat transfer. Cambridge: Academic press; 2013.

    Book  Google Scholar 

  38. Akpinar EK, Koçyiğit F. Energy and exergy analyses of a new flat-plate solar air heater having different obstacles on absorber plates. Appl Energy. 2010;87(11):3438–50.

    Article  Google Scholar 

  39. Karsli S. Performance analyses of new-design solar air collectors for drying applications. Renew Energy. 2007;32(10):1645–60.

    Article  CAS  Google Scholar 

  40. Kurtbas I, Turgut E. Experimental investigation of solar air heater with free and fixed fins: efficiency and exergy loss. Int J Sci Technol. 2006;1(1):75–82.

    Google Scholar 

  41. Petela R. Exergy of undiluted thermal radiation. Sol Energy. 2003;74:469–88.

    Article  Google Scholar 

  42. Karim MA, Hawlader MNA. Performance evaluation of a v-groove solar air collector for drying applications. Appl Therm Eng. 2006;26(1):121–30.

    Article  CAS  Google Scholar 

  43. Sun W, Ji J, He W. Influence of channel depth on the performance of solar air heaters. Energy. 2010;35(10):4201–7.

    Article  Google Scholar 

  44. Karmare SV, Tikekar AN. Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD. Sol Energy. 2010;84(3):409–17.

    Article  Google Scholar 

  45. Das B, Mondol JD, Debnath S, Pugsley A, Smyth M, Zacharopoulos A. Effect of the absorber surface roughness on the performance of a solar air collector: an experimental investigation. Renew Energy. 2020;152:567–78.

    Article  Google Scholar 

  46. Bayrak F, Oztop HF, Hepbasli A. Energy and exergy analyses of porous baffles inserted solar air heaters for building applications. Energy Build. 2013;57:338–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meisam Sadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sari, A., Sadi, M., Shafiei Sabet, G. et al. Experimental analysis and exergetic assessment of the solar air collector with delta winglet vortex generators and baffles. J Therm Anal Calorim 145, 867–885 (2021). https://doi.org/10.1007/s10973-020-10298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10298-6

Keywords

Navigation