Skip to main content
Log in

Modified lattice Boltzmann solution for non-isothermal rarefied gas flow through microchannel utilizing BSR and second-order implicit schemes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal microscale gas flow was simulated into a coplanar microchannel was simulated at a broad range of Knudsen numbers. Attempts were made to improve the accuracy of slip velocity on walls using a modified model with two relaxation times based upon the mesoscopic method. The temperature jump of fluid flow at the wall was captured by a model with a single relaxation time using a second-order implicit method. The Zou–He boundary conditions were employed at both inlet and outlet boundaries, and bounce-back/specular reflection distribution functions were applied to the impermeable walls. The non-equilibrium distribution functions were also used as the inlet temperature boundary condition. A fully developed temperature profile was considered at the microchannel outlet. A pressure ratio of 2 was considered in the simulations, and various parameters such as dimensionless pressure, pressure deviation from the linear pressure, dimensionless velocity at various Knudsen numbers, centerline velocity and slip velocity of the fluid, centerline temperature and fluid temperature on the wall, Nusselt number with changing Knudsen and Prandtl numbers, parameter k along the microchannel length and Cf·Re values were evaluated in the slip and transition flow regimes. The results of the direct simulation Monte Carlo were used to evaluate the correctness of the numerical model. The consistency of the two methods indicated the accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

B:

Molecular slip coefficient

BBC:

Bounce-back

BSR:

Bounce-back/specular reflection

\(c\) :

Lattice speed (m s−1)

\(C^{*}\) :

Temperature jump coefficient

\(C_{\text{f}}\) :

Skin friction coefficient

\(\varvec{c}_{\text{i}}\) :

Discrete velocity vectors (m s−1)

\(c_{\text{s}}\) :

Sound speed (m s−1)

\(\bar{c}\) :

Mean molecular velocity (m s−1)

\(d\) :

Molecular diameter (m)

DSMC:

Direct simulation Monte Carlo

Ec:

Eckert number

f :

Local distribution function (for fluid flow)

g :

Local distribution function (for thermal fluid flow)

H :

Height of the microchannel (m)

Kn:

Knudsen number, Kn = λ/H

lu:

Length unit

\(L\) :

Length of the microchannel (m)

LBM:

Lattice Boltzmann method

Ma:

Mach number

\(m\) :

Molecular mass (kg)

mu:

Mass unit

\({\text{Nu}}\) :

Nusselt number

\(P\) :

Pressure (\({\text{N}}\, {\text{m}}^{ - 2}\))

Pr:

Prandtl number

R:

Gas constant (\({\text{J}}\, {\text{K}}^{ - 1} \, {\text{mol}}^{ - 1}\))

SRT:

Single relaxation time

\(r\) :

Bounce-back fraction parameter

Re:

Reynolds number

T:

Temperature (K)

\(T^{*}\) :

Non-dimensional temperature

\(T_{\text{B}}\) :

Bulk temperature (K)

\(T^{\text{jump}}\) :

Temperature jump (K)

\(T_{\text{mean}}\) :

Mean temperature (K)

t :

Time (s)

TRT:

Two relaxation times

tu:

Time unit

Tu:

Temperature unit

\(U^{*}\) :

Non-dimensional velocity

\(U_{\text{mean}}\) :

Mean velocity (m s−1)

\(U_{\text{s}}\) :

Slip velocity (m s−1)

V :

Velocity vector (m s−1)

X :

Particle location at x-direction (m)

X*:

Non-dimensional parameter at x-direction

Y :

Particle location at y-direction (m)

Y*:

Non-dimensional parameter at y-direction

α:

Thermal diffusivity (m2 s−1)

\(\delta t\) :

Time step (s)

\(\delta x\) :

Step by step (m)

\(\lambda\) :

Molecular mean free path (m)

µ :

Dynamic viscosity (\({\text{N}}\,{\text{s}} \,{\text{m}}^{ - 2}\))

\(v\) :

Kinematic viscosity (m2 s−1)

\(\varPi\) :

Pressure ratio

\(\rho\) :

Density (kg m−3)

\(\sigma\) :

TMAC coefficient

\(\tau_{\text{a}}\) :

Antisymmetric relaxation time (based on slip boundary)

\(\tau_{\text{f}}\) :

Symmetric relaxation time for fluid flow

\(\tau_{\text{g}}\) :

Symmetric relaxation time for thermal fluid flow

\(\tau_{\text{s}}\) :

Symmetric relaxation time (based on viscosity)

\(\varOmega\) :

Collision operator

\(\omega_{\text{i}}\) :

Mass factors

a:

Antisymmetric

aeq:

Antisymmetric equilibrium

e:

Effective

eq:

Equilibrium

i:

Discrete lattice directions

in:

Inlet

l:

Linear

out:

Outlet

s:

Symmetric

seq:

Symmetric equilibrium

w:

Wall

References

  1. Niu XD, Hyodo S, Suga K, Yamaguchi H. Lattice Boltzmann simulation of gas flow over micro-scale airfoils. Comput Fluids. 2009;38(9):1675–81.

    Google Scholar 

  2. Shevchuk IV, Dmitrenko NP, Avramenko AA. Heat transfer and hydrodynamics of slip confusor flow under second-order boundary conditions. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09517-x.

    Article  Google Scholar 

  3. Dongari N, Agrawal A, Agrawal A. Analytical solution of gaseous slip flow in long microchannels. Int J Heat Mass Transf. 2007;50(17–18):3411–21.

    CAS  Google Scholar 

  4. Dongari N, Zhang Y, Reese JM. Modeling of Knudsen layer effects in micro/nanoscale gas flows. J Fluids Eng Trans ASME. 2011;133(7):1–10.

    Google Scholar 

  5. Arkilic EB, Schmidt MA, Breuer KS. Gaseous slip flow in long microchannels. J. Microelectromech Syst. 1997;6:167–78.

    CAS  Google Scholar 

  6. Armaly B, Durst F, Pereira JCF, SchöNung B. Experimental and theoretical investigation of backward-facing step flow. J Fluid Mech. 1983;127:473–96.

    Google Scholar 

  7. Graur I, Veltzke T, Méolans JG, Ho MT, Thöming J. The gas flow diode effect: theoretical and experimental analysis of moderately rarefied gas flows through a microchannel with varying cross section. Microfluid Nanofluidics. 2015;18(3):391–402.

    CAS  Google Scholar 

  8. Hemadri V, Varade VV, Agrawal A, Bhandarkar UV. Investigation of rarefied gas flow in microchannels of non-uniform cross section. Phys Fluids. 2016;28(2):022007.

    Google Scholar 

  9. Sazhin O. Rarefied gas flow through a rough channel into a vacuum. Microfluid Nanofluidics. 2020;24(4):1–9.

    Google Scholar 

  10. Sabouri M, Darbandi M. Numerical study of species separation in rarefied gas mixture flow through micronozzles using DSMC. Phys Fluids. 2019;31(4):042004.

    Google Scholar 

  11. Biswas G, Breuer M, Durst F. Backward-facing step flows for various expansion ratios at low and moderate reynolds numbers. J Fluids Eng Trans ASME. 2004;126(3):362–74.

    Google Scholar 

  12. Darbandi M, Roohi E. DSMC simulation of subsonic flow through nanochannels and micro/nano backward-facing steps. Int Commun Heat Mass Transf. 2011;38(10):1443–8.

    CAS  Google Scholar 

  13. Hadjiconstantinou NG, Simek O. Constant-wall-temperature Nusselt number in micro and nano-channels. J Heat Transf. 2002;124(2):356–64.

    CAS  Google Scholar 

  14. Mozaffari MS, Roohi E. On the thermally-driven gas flow through divergent micro/nanochannels. Int J Mod Phys C. 2017;28(12):1–22.

    Google Scholar 

  15. Roohi E, Darbandi M. Extending the Navier-stokes solutions to transition regime in two-dimensional micro- and nanochannel flows using information preservation scheme. Phys Fluids. 2009;21(8):082001.

    Google Scholar 

  16. Chen S, Tian Z. Simulation of microchannel flow using the lattice Boltzmann method. Phys A Stat Mech Appl. 2009;388(23):4803–10.

    CAS  Google Scholar 

  17. Liu Q, Feng X. Numerical modelling of microchannel gas flows in the transition flow regime using the cascaded lattice Boltzmann method. Entropy. 2020;41:1–16.

    CAS  Google Scholar 

  18. Bakhshan Y, Omidvar A. Calculation of friction coefficient and analysis of fluid flow in a stepped micro-channel for wide range of Knudsen number using Lattice Boltzmann (MRT) method. Phys A Stat Mech Appl. 2015;440:161–75.

    CAS  Google Scholar 

  19. Ginzburg I. Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv Water Resour. 2005;28(11):1171–95.

    CAS  Google Scholar 

  20. Esfahani JA, Norouzi A. Two relaxation time lattice Boltzmann model for rarefied gas flows. Phys A Stat Mech Appl. 2014;393:51–61.

    CAS  Google Scholar 

  21. Guo Z, Zheng C, Shi B. Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow. Phys Rev E Stat Nonlinear Soft Matter Phys. 2008;77(3):1–12.

    Google Scholar 

  22. He X, Luo L. Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys Rev E. 1997;56(6):6811–7.

    CAS  Google Scholar 

  23. Homayoon A, Isfahani AHM, Shirani E, Ashrafizadeh M. A novel modified lattice Boltzmann method for simulation of gas flows in wide range of Knudsen number. Int Commun Heat Mass Transf. 2011;38(6):827–32.

    Google Scholar 

  24. Kharmiani SF, Roohi E. Rarefied transitional flow through diverging nano and microchannels: a TRT lattice Boltzmann study. Int J Mod Phys C. 2018;29(12):1850117.

    CAS  Google Scholar 

  25. Lim CY, Shu C, Niu XD, Chew YT. Application of lattice Boltzmann method to simulate microchannel flows. Phys Fluids. 2002;14(7):2299–308.

    CAS  Google Scholar 

  26. Li Q, He YL, Tang GH, Tao WQ. Lattice Boltzmann modeling of microchannel flows in the transition flow regime. Microfluid Nanofluidics. 2011;10(3):607–18.

    CAS  Google Scholar 

  27. Ahangar EK, Ayani MB, Esfahani JA. Simulation of rarefied gas flow in a microchannel with backward facing step by two relaxation times using Lattice Boltzmann method: slip and transient flow regimes. Int J Mech Sci. 2019;157–158:802–15.

    Google Scholar 

  28. Ahangar EK, Ayani MB, Esfahani JA, Kim KC. Lattice Boltzmann simulation of diluted gas flow inside irregular shape microchannel by two relaxation times on the basis of wall function approach. Vacuum. 2020;173:109104.

    CAS  Google Scholar 

  29. Gokaltun S, Dulikravich GS. Lattice Boltzmann method for rarefied channel flows with heat transfer. Int J Heat Mass Transf. 2014;78:796–804.

    Google Scholar 

  30. Chen S, Tian Z. Simulation of thermal micro-flow using lattice Boltzmann method with Langmuir slip model. Int J Heat Fluid Flow. 2010;31(2):227–35.

    Google Scholar 

  31. Arabpour A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131(2):1553–66.

    CAS  Google Scholar 

  32. Arabpour A, Karimipour A, Toghraie D, Akbari OA. Investigation into the effects of slip boundary condition on nanofluid flow in a double-layer microchannel. J Therm Anal Calorim. 2018;131(3):2975–91.

    CAS  Google Scholar 

  33. Mozaffari M, D’Orazio A, Karimipour A, Abdollahi A, Safaei MR. Lattice Boltzmann method to simulate convection heat transfer in a microchannel under heat flux: gravity and inclination angle on slip-velocity. Int J Numer Methods Heat Fluid Flow. 2019;30(6):3371–98.

    Google Scholar 

  34. D’Orazio A, Karimipour A. A useful case study to develop lattice Boltzmann method performance: gravity effects on slip velocity and temperature profiles of an air flow inside a microchannel under a constant heat flux boundary condition. Int J Heat Mass Transf. 2019;136:1017–29.

    Google Scholar 

  35. Mozaffari M, Karimipour A, D’Orazio A. Increase lattice Boltzmann method ability to simulate slip flow regimes with dispersed CNTs nanoadditives inside: develop a model to include buoyancy forces in distribution functions of LBM for slip velocity. J Therm Anal Calorim. 2019;137(1):229–43.

    CAS  Google Scholar 

  36. Zarei A, Karimipour A, Meghdadi Isfahani AH, Tian Z. Improve the performance of lattice Boltzmann method for a porous nanoscale transient flow by provide a new modified relaxation time equation. Phys A Stat Mech Appl. 2019;535:122453.

    CAS  Google Scholar 

  37. Karimipour A, D’Orazio A, Goodarzi M. Develop the lattice Boltzmann method to simulate the slip velocity and temperature domain of buoyancy forces of FMWCNT nanoparticles in water through a micro flow imposed to the specified heat flux. Phys A Stat Mech Appl. 2018;509:729–45.

    CAS  Google Scholar 

  38. Aghakhani S, Pordanjani AH, Karimipour A, Abdollahi A, Afrand M. Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-Shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput Fluids. 2018;176:51–67.

    Google Scholar 

  39. Nazarafkan H, Mehmandoust B, Toghraie D, Karimipour A. Numerical study of natural convection of nanofluid in a semi-circular cavity with lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2019;30(5):2625–37.

    Google Scholar 

  40. Guo Z, Shu C. Lattice Boltzmann method and its applications in engineering. Singapore: World Scientific Publishing; 2013.

    Google Scholar 

  41. Ahangar EK, Fallah-kharmiani S, Khakhian SD, Wang L. A lattice Boltzmann study of rarefied gaseous flow with convective heat transfer in backward facing micro-step. Phys Fluids. 2020;32:062005.

    CAS  Google Scholar 

  42. Nguyen Q, Jamali Ghahderijani M, Bahrami M, et al. Develop Boltzmann equation to simulate non-Newtonian magneto-hydrodynamic nanofluid flow using power law magnetic Reynolds number. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6513

    Article  Google Scholar 

  43. Taeibi-rahni M, Salimi MR, Rostamzadeh H. Pore-scale modeling of rarefied gas flow in fractal micro-porous media, using lattice Boltzmann method (LBM). J Therm Anal Calorim. 2019;135:1931–42.

    Google Scholar 

  44. Guo Z, Zhao TS, Shi Y. Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows. J Appl Phys. 2006;99(7):074903.

    Google Scholar 

  45. Nie X, Doolen GD, Chen S. Lattice-Boltzmann simulations of fluid flows in MEMS. J Stat Phys. 2002;107:279–89.

    Google Scholar 

  46. Meng J, Zhang Y, Shan X. Multiscale lattice Boltzmann approach to modeling gas flows. Phys Rev E Stat Nonlinear Soft Matter Phys. 2011;83(4):1–10.

    Google Scholar 

  47. Tang GH, Tao WQ, He YL. Lattice Boltzmann method for simulating gas flow in microchannels. Int J Mod Phys C. 2004;15(2):335–47.

    CAS  Google Scholar 

  48. Michalis VK, Kalarakis AN, Skouras ED, Burganos VN. Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid Nanofluidics. 2010;9(4–5):847–53.

    Google Scholar 

  49. Beskok A, Karniadakis GE. Report: a model for flows in channels, pipes, and ducts at micro and nano scales. Micro Thermo Eng. 2010;3:43–77.

    Google Scholar 

  50. Yuhong S, Chan WK. Analytical modeling of rarefied Poiseuille flow in microchannels. J Vac Sci Technol A Vacuum Surfaces Film. 2004;22(2):383–94.

    Google Scholar 

  51. Li XZ, Fan JC, Yu H, Zhu YB, Wu HA. Lattice Boltzmann method simulations about shale gas flow in contracting nano-channels. Int J Heat Mass Transf. 2018;122:1210–21.

    Google Scholar 

  52. Hsia YT, Domoto GA. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances. J Tribol. 1983;105:120–9.

    Google Scholar 

  53. Cercignani C. Kinetic theory with “bounce-back” boundary conditions. Transp Theory Stat Phys. 1989;18(1):125–31.

    Google Scholar 

  54. Loyalka SK, Petrellis N, Storvick TS. Some numerical results for the BGK model: thermal creep and viscous slip problems with arbitrary accomodation at the surface. Phys Fluids. 1975;18(9):1094–9.

    Google Scholar 

  55. Loyalka SK. Velocity slip coefficient and the diffusion slip velocity for a multicomponent gas mixture. Phys Fluids. 1971;14(12):2599–604.

    CAS  Google Scholar 

  56. Tian ZW, Zou C, Liu HJ, Guo ZL, Liu ZH, Zheng CG. Lattice Boltzmann scheme for simulating thermal micro-flow. Phys A Stat Mech Appl. 2007;385(1):59–68.

    Google Scholar 

  57. Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids. 1997;9(6):1591–8.

    CAS  Google Scholar 

  58. Mosavat N, Hasanidarabadi B, Pourafshary P. Gaseous slip flow simulation in a micro/nano pore-throat structure using the lattice Boltzmann model. J Pet Sci Eng. 2019;177:93–103.

    CAS  Google Scholar 

  59. Sreekanth AK. Slip flow through long circular tubes. In: Proceedings of the sixth international symposium on rarefied gas dynamics, Academic Press, New York; 1969. p. 667–76.

  60. Ohwada T, Sone Y, Aoki K. Numerical analysis of the Poiseuille and thermal transpiration flows between two parallel plates on the basis of the Boltzmann equation for hard-sphere molecules. Phys Fluids A. 1989;1(12):2042–9.

    CAS  Google Scholar 

  61. Roohi E, Darbandi M, Mirjalili V. Direct simulation Monte Carlo solution of subsonic flow through micro/nanoscale channels. J Heat Transf. 2009;131(9):1–8.

    Google Scholar 

  62. Liu X, Guo Z. A lattice Boltzmann study of gas flows in a long micro-channel. Comput Math Appl. 2013;65(2):186–93.

    Google Scholar 

  63. Zhang C, Deng Z, Chen Y. Temperature jump at rough gas-solid interface in Couette flow with a rough surface described by Cantor fractal. Int J Heat Mass Transf. 2014;70:322–9.

    Google Scholar 

  64. Shokouhmand H, Meghdadi Isfahani AH. An improved thermal lattice Boltzmann model for rarefied gas flows in wide range of Knudsen number. Int Commun Heat Mass Transf. 2011;38(10):1463–9.

    Google Scholar 

  65. Mahdavi AM, Roohi E. Investigation of cold-to-hot transfer and thermal separation zone through nano step geometries. Phys Fluids. 2015;27(7):072002.

    Google Scholar 

  66. Gavasane A, Agrawal A, Bhandarkar U. Study of rarefied gas flows in backward facing micro-step using direct simulation Monte Carlo. Vacuum. 2018;155:249–59.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang-Vu Bach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamali Ahangar, E., Izanlu, M., Dolati Khakhian, S. et al. Modified lattice Boltzmann solution for non-isothermal rarefied gas flow through microchannel utilizing BSR and second-order implicit schemes. J Therm Anal Calorim 144, 2525–2541 (2021). https://doi.org/10.1007/s10973-020-10129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10129-8

Keywords

Navigation