Skip to main content
Log in

Non-isothermal TG/DTG-FTIR kinetic study for devolatilization of Dalbergia sissoo wood under nitrogen atmosphere

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study deals with chemical characterization and pyrolysis kinetics of Dalbergia sissoo wood (DSW). The characterization of DSW, in terms of proximate, ultimate, biochemical compositions, and TG-FTIR analysis are carried out. FTIR, coupled with TG system, identified the traces of various volatiles such as H2O, CH4, CO2, CO, CH3CHO, HCHO, CH3COCH3, CH3COOH, HCOOH, and R–OH during pyrolysis. Further, a non-isothermal TG for the pyrolysis of DSW has been performed in a nitrogen atmosphere. The integral isoconversional model-free methods are applied on TG data of DSW to evaluate activation energies at five different heating rates from 5 to 30 °C min−1. The variations in pyrolysis behavior as reflected by the activation energies have been explained based on type of volatiles that gets released with time during the degradation process. The full range of solid-state kinetic models purposed by Malek method produced best fits with TG results, with the 3-D diffusion model followed by random nucleation with three nuclei on the individual particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

α :

Conversion or reaction progress

β :

Heating rate/°C min−1

\(E_{\text{a}}\) :

Apparent activation energy/kJ mol−1

\(E_{\upalpha}\) :

Activation energy at conversion α/kJ mol−1

A :

Pre-exponential factor/min−1

K :

Reaction rate constant/min−1

n :

Order of reaction

R :

Universal gas constant (8.314 kJ kmol−1 K−1)

T :

Temperature/K

p(x):

Exponential/temperature integral approximation

f(α):

Differential form of reaction model

g(α):

Integral form of reaction model

\(T_{\text{m}}\) :

Temperature at maximum peak in DTG curve/K

\(T_{\text{i}}\) :

Initial temperature of the active pyrolysis zone/K

\(T_{\text{f}}\) :

Final temperature of the passive pyrolysis zone/K

\(R^{2}\) :

Correlation coefficient

rE:

Relative error

DSW:

Dalbergia sissoo wood

TG:

Thermogravimetric analysis/thermogravimetry

DTG:

Differential thermogravimetric analysis

FTIR:

Fourier-transformed infrared spectroscopy

TG-FTIR:

The thermogravimetry coupled with Fourier-transformed infrared spectroscopy

OFW:

Ozawa–Flynn–Wall

DAEM:

Distributed activation energy model

V.AIC:

Advanced isoconversional method of Vyazovkin

NL:

Nonlinear

HHV:

High heating value

LHV:

Low heating value

HCE:

Hemicellulose

CELL:

Cellulose

LIG:

Lignin

OBM:

Order-based model

References

  1. Ghosh SK. Potential of economic utilization of biomass waste in India: Implications towards SDGs. Seventh Reg 3R Forum Asia Pacific. 2016.

  2. Demirbaş A, Arin G. An overview of biomass pyrolysis. Energy Sour. 2002;24:471–82.

    Article  Google Scholar 

  3. Khawam A, Flanagan DR. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. J Phys Chem B. 2005;109:10073–80.

    Article  CAS  PubMed  Google Scholar 

  4. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  5. Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288:97–104.

    Article  CAS  Google Scholar 

  6. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  7. Ruitenberg G, Woldt E, Petford-Long AK. Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions. Thermochim Acta. 2001;378:97–105.

    Article  CAS  Google Scholar 

  8. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochem Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  9. Mansaray KG, Ghaly AE. Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis. Biomass Bioenergy. 1999;17:19–31.

    Article  CAS  Google Scholar 

  10. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011. https://doi.org/10.1016/j.tca.2011.03.034.

    Article  Google Scholar 

  11. Sbirrazzuoli N. Is the Friedman method applicable to transformations with temperature dependent reaction heat? Macromol Chem Phys. 2007;208:1592–7.

    Article  CAS  Google Scholar 

  12. Yunqing H. Theoretical study of thermal analysis kinetics. 2014.

  13. Manyà JJ, Velo E, Puigjaner L. Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res. 2003;42:434–41.

    Article  CAS  Google Scholar 

  14. Wang X, Hu M, Hu W, Chen Z, Liu S, Hu Z, et al. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresour Technol. 2016;219:510–20. https://doi.org/10.1016/j.biortech.2016.07.136.

    Article  CAS  PubMed  Google Scholar 

  15. Weerachanchai P, Tangsathitkulchai C, Tansathitkulchai M. Comparison of pyrolysis kinetic models for thermogravimetric analysis of biomass. Suranaree J Sci Technol. 2010;17:387–400.

    Google Scholar 

  16. Poletto M, Zattera AJ, Santana RMC. Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresour Technol. 2012;126:7–12.

    Article  CAS  PubMed  Google Scholar 

  17. Criado JM, Málek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.

    Article  CAS  Google Scholar 

  18. Núñez L, Fraga F, Núñez MR, Villanueva M. Thermogravimetric study of the decomposition process of the system BADGE (n = 0)/1,2 DCH. Polymer (Guildf). 2000;41:4635–41.

    Article  Google Scholar 

  19. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab. 2010;95:733–9.

    Article  CAS  Google Scholar 

  20. Bianchi O, Castel CD, De Oliveira RVB, Bertuoli PT, Hillig E. Avaliação da degradação não- isotérmica de madeira através de termogravimetria-TGA. Polimeros. 2010;20:395–400.

    Article  CAS  Google Scholar 

  21. Hu Y, Wang Z, Cheng X, Ma C. Non-isothermal TGA study on the combustion reaction kinetics and mechanism of low-rank coal char. RSC Adv R S Chem. 2018;8:22909–16.

    Article  CAS  Google Scholar 

  22. Mishra G, Kumar J, Bhaskar T. Kinetic studies on the pyrolysis of pinewood. Bioresour Technol. 2015;182:282–8. https://doi.org/10.1016/j.biortech.2015.01.087.

    Article  CAS  PubMed  Google Scholar 

  23. Souza BS, Moreira APD, Teixeira AMRF. TG-FTIR coupling to monitor the pyrolysis products from agricultural residues. J Therm Anal Calorim. 2009;97:637–42.

    Article  CAS  Google Scholar 

  24. Kumar M, Kumar M, Arora S. Thermal degradation and flammability studies of wood coated with fly ash intumescent composites. J Indian Acad Wood Sci. 2013;10:125–33.

    Article  Google Scholar 

  25. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, et al. Chemical kinetics of biomass pyrolysis. Energy Fuels. 2008;22:4292–300.

    Article  CAS  Google Scholar 

  26. Anca-Couce A, Scharler R. Modelling heat of reaction in biomass pyrolysis with detailed reaction schemes. Fuel. 2017;206:572–9.

    Article  CAS  Google Scholar 

  27. Sebio-Puñal T, Naya S, López-Beceiro J, Tarrío-Saavedra J, Artiaga R. Thermogravimetric analysis of wood, holocellulose, and lignin from five wood species. J Therm Anal Calorim. 2012;109:1163–7.

    Article  CAS  Google Scholar 

  28. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  29. Mishra RK, Mohanty K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol. 2018;251:63–74. https://doi.org/10.1016/j.biortech.2017.12.029.

    Article  CAS  PubMed  Google Scholar 

  30. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7. https://doi.org/10.1016/j.apenergy.2011.12.056.

    Article  CAS  Google Scholar 

  31. Chen Z, Zhu Q, Wang X, Xiao B, Liu S. Pyrolysis behaviors and kinetic studies on Eucalyptus residues using thermogravimetric analysis. Energy Convers Manag. 2015;105:251–9. https://doi.org/10.1016/j.enconman.2015.07.077.

    Article  CAS  Google Scholar 

  32. Ghodke P, Mandapati RN. Investigation of particle level kinetic modeling for babul wood pyrolysis. Fuel. 2019;236:1008–17. https://doi.org/10.1016/j.fuel.2018.09.084.

    Article  CAS  Google Scholar 

  33. Meng H, Wang S, Chen L, Wu Z, Zhao J. Thermal behavior and the evolution of char structure during co-pyrolysis of platanus wood blends with different rank coals from northern China. Fuel. 2015;158:602–11. https://doi.org/10.1016/j.fuel.2015.06.023.

    Article  CAS  Google Scholar 

  34. Salehi E, Abedi J, Harding T. Bio-oil from sawdust: pyrolysis of sawdust in a fixed-bed system. Energy Fuels. 2009;23:3767–72.

    Article  CAS  Google Scholar 

  35. Özbay G. Catalytic pyrolysis of pine wood sawdust to produce bio-oil: effect of temperature and catalyst additives. J Wood Chem Technol. 2015;35:302–13.

    Article  CAS  Google Scholar 

  36. Soria-Verdugo A, Goos E, García-Hernando N. Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the Distributed Activation Energy Model. Fuel Process Technol. 2015;134:360–71. https://doi.org/10.1016/j.fuproc.2015.02.018.

    Article  CAS  Google Scholar 

  37. Bianchi O, Martins JDN, Fiorio R, Oliveira RVB, Canto LB. Changes in activation energy and kinetic mechanism during EVA crosslinking. Polym Test. 2011;30:616–24. https://doi.org/10.1016/j.polymertesting.2011.05.001.

    Article  CAS  Google Scholar 

  38. Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89:479–90.

    Article  CAS  Google Scholar 

  39. Doyle CD. Series approximations to the equation of thermodynamic data. Nature. 1965;207:290–1.

    Article  CAS  Google Scholar 

  40. Pérez-Maqueda LA, Sánchez-Jiménez PE, Criado JM. Kinetic analysis of solid-state reactions: precision of the activation energy calculated by integral methods. Int J Chem Kinet. 2005;37:658–66.

    Article  CAS  Google Scholar 

  41. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  42. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  43. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.

    Article  Google Scholar 

  44. Flynn JH, Wall LA. General trement of the therogravimetry of polymers. J Res Natl Bur Stand. 1934;1966(70A):487–523.

    Google Scholar 

  45. Takeo O. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6. https://doi.org/10.1246/bcsj.38.1881.

    Article  Google Scholar 

  46. Li J, Zhang C, Yin R, Zhang W. Thermal debinding behavior of a low-toxic DMAA polymer for gelcast ceramic parts based on TG- FTIR and kinetic modeling. RSC Adv R Soc Chem. 2019;9:8415–25.

    Article  CAS  Google Scholar 

  47. Miura K, Maki T. A simple method for estimating f(E) and ko(E) in the distributed activation energy model. Energy & Fuels. 1998;12:864–9.

    Article  CAS  Google Scholar 

  48. Ortega A. A simple and precise linear integral method for isoconversional data. Thermochim Acta. 2008;474:81–6.

    Article  CAS  Google Scholar 

  49. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  50. Vyazovkin S. Model-free kinetics staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  51. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.

    Article  CAS  PubMed  Google Scholar 

  52. Shuping Z, Yulong W, Mingde Y, Chun L, Junmao T. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol. 2010;101:359–65. https://doi.org/10.1016/j.biortech.2009.08.020.

    Article  CAS  PubMed  Google Scholar 

  53. Basu P. Biomass gasification and pyrolysis, practical design and theory. Amsterdam: Elsevier; 2010.

    Google Scholar 

  54. Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81:1051–63.

    Article  CAS  Google Scholar 

  55. Parmar K. Biomass: an overview on composition characteristics and properties. IRA-Int J Appl Sci. 2017;7:42.

    CAS  Google Scholar 

  56. Salaheldeen M, Aroua MK, Mariod AA, Cheng SF, Abdelrahman MA. An evaluation of Moringa peregrina seeds as a source for bio-fuel. Ind Crops Prod. 2014;61:49–61. https://doi.org/10.1016/j.indcrop.2014.06.027.

    Article  CAS  Google Scholar 

  57. Li S, Xu S, Liu S, Yang C, Lu Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol. 2004;85:1201–11.

    Article  CAS  Google Scholar 

  58. El-Sayed SA, Mostafa ME. Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques. Waste Biomass Valorization. 2015;6:401–15.

    Article  CAS  Google Scholar 

  59. Cagnon B, Py X, Guillot A, Stoeckli F, Chambat G. Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Bioresour Technol. 2009;100:292–8.

    Article  CAS  PubMed  Google Scholar 

  60. Rueda-Ordóñez YJ, Tannous K. Isoconversional kinetic study of the thermal decomposition of sugarcane straw for thermal conversion processes. Bioresour Technol. 2015;196:136–44.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang X, Yang W, Blasiak W. Modeling study of woody biomass : interactions of cellulose, hemicellulose, and lignin. Energy & Fuels. 2011;25:4786–95.

    Article  CAS  Google Scholar 

  62. Werner K, Pommer L, Broström M. Thermal decomposition of hemicelluloses. J Anal Appl Pyrolysis. 2014;110:1–8. https://doi.org/10.1016/j.jaap.2014.08.013.

    Article  CAS  Google Scholar 

  63. Cao H, Xin Y, Wang D, Yuan Q. Pyrolysis characteristics of cattle manures using a discrete distributed activation energy model. Bioresour Technol. 2014;172:219–25. https://doi.org/10.1016/j.biortech.2014.09.049.

    Article  CAS  PubMed  Google Scholar 

  64. Mallick D, Poddar MK, Mahanta P, Moholkar VS. Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis. Bioresour Technol. 2018;261:294–305. https://doi.org/10.1016/j.biortech.2018.04.011.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The current research work is supported by Ministry of Human Resource and Development (M.H.R.D), Government of India, New Delhi, for providing the financial aid to carry out this research at Indian Institute of Technology Roorkee, Roorkee, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Mohanty, B. Non-isothermal TG/DTG-FTIR kinetic study for devolatilization of Dalbergia sissoo wood under nitrogen atmosphere. J Therm Anal Calorim 146, 865–879 (2021). https://doi.org/10.1007/s10973-020-09978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09978-0

Keywords

Navigation