Skip to main content
Log in

Analysis of activation energy and entropy generation in mixed convective peristaltic transport of Sutterby nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Peristalsis of nanofluid is significant in cancer treatment, ulcer treatment and industrial equipment. This study simulated the MHD peristaltic transport of Sutterby nanofluid with mixed convection and Hall current. Partial slip and convective conditions are imposed for flexible channel walls. Energy and concentration equations are modeled by considering the effects of Joule heating, thermal radiation, viscous dissipation and activation energy. Buongiorno nanofluid model is employed which features thermophoresis and Brownian movement aspects. The resulting nonlinear system of equations is numerically solved after employing the large wavelength and small Reynolds number supposition. Graphical analysis for the velocity, temperature, concentration, heat transfer coefficient and entropy generation is analyzed. It is observed that velocity has opposite behavior for mixed convection parameters. Temperature and heat transfer rate enhanced for Brownian movement and thermophoresis parameters. Concentration rises against larger activation energy and radiation variables. Further entropy declines against higher diffusion parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Abbreviations

\((u,v)\) :

Velocity components \(\left( {{\text{m}}\;{\text{s}}^{{ - 1}} } \right)\)

\(\left( {x,y} \right)\) :

Cartesian coordinates \(\left( {\text{m}} \right)\)

\(c\) :

Wave speed \(\left( {{\text{m}}\;{\text{s}}^{{ - 1}} } \right)\)

\(g\) :

Gravitational acceleration \(\left( {{\text{m}}\;{\text{s}}^{{ - 2}} } \right)\)

\(a\) :

Wave amplitude \(({\text{m}})\)

\(\mu\) :

Dynamic viscosity \(\left( {{\text{kg}}\;{\text{m}}^{{ - 1}} {\text{s}}^{{ - 1}} } \right)\)

\(d_{1}\) :

Half channel width \(\left( {\text{m}} \right)\)

\(p\) :

Pressure \(\left( {{\text{N}}\;{\text{m}}^{{ - 2}} } \right)\)

\(\rho_{\text{f}}\) :

Density of nanofluid \(\left( {{\text{kg}}\;{\text{m}}^{{ - 3}} } \right)\)

\(\alpha\) :

Thermal diffusivity \(\left( {{\text{m}}^{2} \;{\text{s}}^{{ - 1}} } \right)\)

\(\lambda\) :

Wave length \(\left( {\text{m}} \right)\)

\(k\) :

Thermal conductivity \(\left( {{\text{kg}}\;{\text{mK}}^{{ - 1}} \;{\text{s}}^{{ - 3}} } \right)\)

\(c_{p}\) :

Specific heat \(\left( {{\text{m}}^{2} \;{\text{s}}^{{ - 2}} \;{\text{K}}^{{ - 1}} } \right)\)

\(\nu\) :

Kinematic viscosity \(\left( {{\text{m}}^{2} \;{\text{s}}^{{ - 1}} } \right)\)

\(\beta_{T}\) :

Thermal expansion coefficient \(\left( {{\text{K}}^{ - 1} } \right)\)

\(\beta_{C}\) :

Concentration expansion coefficient \(\left( {\left( {{\text{kg}}} \right)^{{ - 1}} \;{\text{m}}^{{ - 3}} } \right)\)

\(m_{1}\) :

Mass per unit area \(\left( {{\text{kg}}\;{\text{m}}^{{ - 2}} } \right)\)

\(g\) :

Gravitational acceleration \(\left( {{\text{m}}\;{\text{s}}^{{ - 2}} } \right)\)

\(h_{1}\) :

Heat transfer rate \(\left( {{\text{kg}}\;{\text{m}}^{{ - 2}}\, {\text{K}}} \right)\)

\(\tau_{1}\) :

Elastic tension \(\left( {{\text{kg}}\;{\text{s}}^{{ - 2}} } \right)\)

\(t\) :

Time \(\left( {\text{s}} \right)\)

\(\sigma\) :

Electric conductivity \(\left( {\left( {{\text{kg}}} \right)^{{ - 1}} {\text{m}}^{{ - 2}} \;{\text{s}}^{3} \;{\text{A}}^{2} } \right)\)

\(T\) :

Fluid temperature \(\left( {\text{K}} \right)\)

\(T_{\text{m}}\) :

Mean temperature \(\left( {\text{K}} \right)\)

\(C\) :

Fluid concentration \(\left( {{\text{kg}}\;{\text{m}}^{{ - 3}} } \right)\)

\(B_{0}\) :

Applied magnetic field \(\left( {{\text{kg}}\;{\text{s}}^{{ - 2}} \;{\text{A}}^{{ - 1}} } \right)\)

\(D_{\text{T}}\) :

Thermophoretic diffusion coefficient \(\left( {{\text{m}}^{2} \;{\text{s}}^{1} } \right)\)

θ :

Temperature

ϕ :

Concentration

\(\psi\) :

Stream function

\(\varepsilon\) :

Amplitude ratio

\(m\) :

Hall parameter

\(Re\) :

Reynolds number

\(\delta\) :

Wave number

\(Br\) :

Brinkman number

\({ \Pr }\) :

Prandtl number

\(Ec\) :

Eckert number

\(E_{1} ,E_{2} ,E_{3}\) :

Wall parameters

\(M\) :

Hartman number

\(Rn\) :

Radiation parameter

\(\varOmega\) :

Temperature ratio parameter

\(B\) :

Fluid parameter

\(Nb\) :

Brownian motion parameter

\(Nt\) :

Thermophoresis parameter

\(Gr\) :

Thermal Grashof number

\(Gc\) :

Mass Grashof number

\(Bi_{1}\) :

Thermal Biot number

\(Bi_{2}\) :

Mass Biot number

\(\beta\) :

Slip parameter

\(Sc\) :

Schmidt number

\(\zeta\) :

Chemical reaction parameter

\(E\) :

Activation energy parameter

References

  1. Latham TW. Fluid motion in a peristaltic pump. MS Thesis. MIT Cambridge, MA. 1966.

  2. Shapiro AH, Jaffrin MY, Wienberg SL. Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech. 1969;37:799–825.

    Article  Google Scholar 

  3. Kothandapani M, Srinivas S. Non-linear peristaltic transport of a Newtonian fluid in an inclined asymmetric channel through a porous medium. Phys Lett A. 2008;372:1265–76.

    Article  CAS  Google Scholar 

  4. Tripathi D, Yadav A, Bég OA. Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis. Eur Phys J Plus. 2017;132:173.

    Article  Google Scholar 

  5. Javid K, Ali N, Asghar Z. Numerical simulation of the peristaltic motion of a viscous fluid through a complex wavy non-uniform channel with magnetohydrodynamic effects. Phys Scr. 2019;94:115226.

    Article  CAS  Google Scholar 

  6. Bhovad P, Kaufmann J, Li S. Peristaltic locomotion without digital controllers: exploiting multi-stability in origami to coordinate robotic motion. Extreme Mech Lett. 2019;32:100552.

    Article  Google Scholar 

  7. Riaz A, Khan SUD, Zeeshan A, Khan SU, Hassan M, Muhammad T. Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09454-9.

    Article  Google Scholar 

  8. Asha SK, Sunitha G. Thermal radiation and Hall effects on peristaltic blood flow with double diffusion in the presence of nanoparticles. Case Stud Therm Eng. 2020;17:100560.

    Article  Google Scholar 

  9. Rashid M, Ansar K, Nadeem S. Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel. Phys A. 2020. https://doi.org/10.1016/j.physa.2019.123979.

    Article  Google Scholar 

  10. Ali A, Saleem S, Mumraiz S, Saleem A, Awais M, Marwat DNK. Investigation on TiO2–Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffrey material. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09648-1.

    Article  Google Scholar 

  11. Opanuga AA, Adesanya SO, Okagbue HI, Agboola OO. Impact of Hall current on the entropy generation of radiative MHD mixed convection casson fluid. Int J Appl Comput Math. 2020;6:1–18.

    Article  Google Scholar 

  12. Vaidya H, Choudhari R, Gudekote M, Prasad KV, Makinde OD, Vajravel K. Heat and mass transfer analysis of MHD peristaltic flow through a complaint porous channel with variable thermal conductivity. Phys Scr. 2020. https://doi.org/10.1088/1402-4896/ab681a.

    Article  Google Scholar 

  13. Manjunatha G, Rajashekhar C, Vaidya H, Prasad KV, Vajravelu K. Impact of heat and mass transfer on the peristaltic mechanism of Jeffery fluid in a non-uniform porous channel with variable viscosity and thermal conductivity. J Therm Anal Calorim. 2020;139:1213–28.

    Article  CAS  Google Scholar 

  14. Kayani SM, Hina S, Mustafa M. A new model and analysis for peristalsis of Carreau–Yasuda (CY) nanofluid subject to wall properties. Arab J Sci Eng. 2020. https://doi.org/10.1007/s13369-020-04359-z.

    Article  Google Scholar 

  15. Choi SUS. Enhancing thermal conductivity of the fluids with nanoparticles. ASME Fluids Eng Div. 1995;231:99–105.

    CAS  Google Scholar 

  16. Buongiorno J. Convective transport in nanofluids. ASME J Heat Transf. 2005;128:240–50.

    Article  Google Scholar 

  17. Mustafa M, Hina S, Hayat T, Alsaedi A. Influence of wall properties on the peristaltic flow of a nanofluid: analytic and numerical solutions. Int J Heat Mass Transf. 2012;55:4871–7.

    Article  CAS  Google Scholar 

  18. Akbar NS, Raza M, Ellahi R. Interaction of nanoparticles for the peristaltic flow in an asymmetric channel with the induced magnetic field. Eur Phys J Plus. 2014;129:155.

    Article  Google Scholar 

  19. Mosayebidorcheh S, Hatami M. Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel. Int J Heat Mass Transf. 2018;126:790–9.

    Article  CAS  Google Scholar 

  20. Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    Article  CAS  Google Scholar 

  21. Raza M, Ellahi R, Sait SM, Sarafraz MM, Shadloo MS, Waheed I. Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J Therm Anal Calorim. 2019;140:1277–91.

    Article  Google Scholar 

  22. Latha R, Kumar BR. Effects of thermal radiation on peristaltic flow of nanofluid in a channel with Joule heating and Hall current. In: Applied mathematics and scientific computing 2019 (pp. 301–311). Birkhäuser, Cham.

  23. Sucharitha G, Vajravelu K, Lakshminarayana P. Effect of heat and mass transfer on the peristaltic flow of a Jeffrey nanofluid in a tapered flexible channel in the presence of aligned magnetic field. Eur Phys J Spec Top. 2019;228:2713–28.

    Article  CAS  Google Scholar 

  24. Ahmad S, Nadeem S, Muhammad N, Khan MN. Cattaneo–Christov heat flux model for stagnation point flow of micropolar nanofluid toward a nonlinear stretching surface with slip effects. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09504-2.

    Article  Google Scholar 

  25. Hasona W, Almalki N, ElShekhipy A, Ibrahim M. Combined effects of thermal radiation and magnetohydrodynamic on peristaltic flow of nanofluids: applications to radiotherapy and thermotherapy of cancer. Curr Nanosci. 2020;16:121–34.

    Article  CAS  Google Scholar 

  26. Motlagh MB, Kalteh M. Simulating the convective heat transfer of nanofluid Poiseuille flow in a nanochannel by molecular dynamics method. Int Commun Heat Mass Transf. 2020;111:104478.

    Article  Google Scholar 

  27. Sheikholeslami M, Jafaryar M, Shafee A, Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J Clean Prod. 2020. https://doi.org/10.1016/j.jclepro.2020.121206.

    Article  Google Scholar 

  28. Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2020;140:879–90.

    Article  CAS  Google Scholar 

  29. Sutterby JL. Laminar converging flow of dilute polymer solutions in conical sections: part I. Viscosity data, new viscosity model, tube flow solution. AIChE J. 1966;12:63–8.

    Article  CAS  Google Scholar 

  30. Ahmad S, Farooq M, Javed M, Anjum A. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection. Results Phys. 2018;8:1250–9.

    Article  Google Scholar 

  31. Ramesh K, Prakash J. Thermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel. J Therm Anal Calorim. 2019;138:1311–26.

    Article  CAS  Google Scholar 

  32. Atlas F, Javed M, Imran N. Effects of heat and mass transfer on the peristaltic motion of Sutterby fluid in an inclined channel. Multidiscipline Model Mater Struc. 2020. https://doi.org/10.1108/MMMS-08-2019-0156.

    Article  Google Scholar 

  33. Bejan A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J Appl Phys. 1966;79:1191–218.

    Article  Google Scholar 

  34. Ahmed B, Hayat T, Alsaedi A, Abbasi FM. Entropy generation in peristalsis with iron oxide. J Therm Anal Calorim. 2019;140:789–97.

    Article  Google Scholar 

  35. Barnoon P, Toghraie D, Dehkordi RB, Abed H. MHD mixed convection and entropy generation in a lid-driven cavity with rotating cylinders filled by a nanofluid using two phase mixture model. J Magn Magn Mater. 2019;483:224–48.

    Article  CAS  Google Scholar 

  36. Ahmad S, Nadeem S, Ullah N. Entropy generation and temperature-dependent viscosity in the study of SWCNT–MWCNT hybrid nanofluid. Appl Nanosci. 2020. https://doi.org/10.1007/s13204-020-01306-0.

    Article  Google Scholar 

  37. Sheikholeslami M, Arabkoohsar MA, Ismail KAR. Entropy analysis for a nanofluid within a porous media with magnetic force impact using non-Darcy model. Int Commun Heat Mass Transf. 2020;112:104488.

    Article  CAS  Google Scholar 

  38. Bestman AR. Natural convection boundary layer with suction and mass transfer in a porous medium. Int J Energy Res. 1990;14:389–96.

    Article  CAS  Google Scholar 

  39. Lu D, Ramzan M, Ahmad S, Chung JD, Farooq U. Upshot of binary chemical reaction and activation energy on carbon nanotubes with Cattaneo-Christov heat flux and buoyancy effects. Phys Fluids. 2017;29:123103.

    Article  Google Scholar 

  40. Hayat T, Khan AA, Bibi F, Farooq S. Activation energy and non-Darcy resistance in magneto peristalsis of Jeffrey material. J Phys Chem Solids. 2019;129:155–61.

    Article  CAS  Google Scholar 

  41. Muhammad T, Waqas H, Khan SA, Ellahi R, Sait SM. Significance of nonlinear thermal radiation in 3D Eyring-Powell nanofluid flow with Arrhenius activation energy. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09459-4.

    Article  Google Scholar 

  42. Waqas H, Khan SU, Shehzad SA, Imran M, Tlili I. Activation energy and bioconvection aspects in generalized second-grade nanofluid over a Riga plate: a theoretical model. Appl Nanosci. 2020. https://doi.org/10.1007/s13204-020-01332-y.

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful to Higher Education Commission (HEC) of Pakistan for financial Support of this work under the project No. 20-3088/NRPU/R & D/HEC/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Nisar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Nisar, Z., Alsaedi, A. et al. Analysis of activation energy and entropy generation in mixed convective peristaltic transport of Sutterby nanofluid. J Therm Anal Calorim 143, 1867–1880 (2021). https://doi.org/10.1007/s10973-020-09969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09969-1

Keywords

Navigation