Skip to main content
Log in

Magnetohydrodynamic mixed convection 3-D simulations for chemically reactive couple stress nanofluid over periodically moving surface with thermal radiation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the recent advancement in growing nano-technology, the dynamic scientists have shown their interest toward the thermal aspects of nanoparticles due to their prestigious industrial, engineering, medical and modern sciences applications. The current exertion discloses unsteady three-dimensional chemically reactive couple stress nanofluid flow induced by bidirectional oscillatory stretching surface. The heat transfer analysis is explored by utilizing heat generation/absorption and thermal radiation features. Additionally, the mixed convection and magnetic effects are also encountered as novelty. The flow has been generated by bidirectional periodically accelerated surface. Apposite transformations are engaged to reduce formulated nonlinear problem into dimensionless form, and then analytic series solution is computed via homotopic technique. The physical aspect of involved flow parameters is graphically entertained. A complete graphical investigation for profiles of dimensionless velocities, temperature, concentration and skin friction coefficients is deliberated for various prominent flow parameters. Furthermore, the numerical calculations for local Nusselt and Sherwood numbers are presented and discussed. The results perceived that amplitude of oscillation increases in both components of velocities and skin friction coefficients for higher couple stress parameter. It is further reported that temperature distribution enhanced for higher values of Brownian motion parameter, thermophoresis constant and radiation parameter. Moreover, the concentration distribution decreases for enhancement of Brownian motion parameter and chemical reaction parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(u,v,w\) :

Velocity components along \(\tilde{x},\tilde{y}\)and \(\tilde{z}\) \(\left( {{\text{ms}}^{ - 1} } \right)\)

\(\tilde{x},\tilde{y},\tilde{z}\) :

Coordinate axes \(\left( {\text{m}} \right)\)

\(a\) :

Stretching rate \(\left( {{\text{s}}^{ - 1} } \right)\)

\(\bar{T}\) :

Temperature \(\left( {\text{K}} \right)\)

\(\bar{C}\) :

Nanoparticles concentration \(\left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right)\)

\(\bar{T}_{{{\bar{\text{w}}}}}\) :

Wall temperature \(({\rm K})\)

\(\bar{C}_{{{\bar{\text{w}}}}}\) :

Concentration at wall \(\left( {{\text{kg}}\;{\text{m}}^{ - 3} } \right)\)

\(\bar{T}_{\infty }\) :

Ambient temperature \(\left( {\text{K}} \right)\)

\(\bar{C}_{\infty }\) :

Ambient concentration \(\left( {{\text{kg}}\;{\text{m}}^{ - 3} } \right)\)

\(t\) :

Time \(\left( {\text{s}} \right)\)

\(\omega\) :

Frequency \(\left( {{\text{s}}^{ - 1} } \right)\)

\(\eta_{ * }\) :

Material constant for couple stress parameter \(\left( {{\text{kg}}\;{\text{m}}\;{\text{s}}^{ - 1} } \right)\)

\(\rho_{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\text{f}}}}\) :

Density of base fluid \(\left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right)\)

\(\sigma\) :

Electrical conductivity of base fluid \(\left( {{\text{Sm}}^{ - 1} } \right)\)

\({\rm B}_{0}\) :

Strength of magnetic field \(\left( {{\text{kg}}\,{\text{s}}^{ - 2} \,{\text{A}}^{ - 1} } \right)\)

\(\bar{g}\) :

Gravitational acceleration \(\left( {{\text{ms}}^{ - 2} } \right)\)

\(\beta_{{{\bar{\text{T}}}}}\) :

Thermal expansion coefficient \(\left( {{\text{K}}^{ - 1} } \right)\)

\(\beta_{{\bar{C}}}\) :

Concentration expansion coefficient \(\left( {{\text{K}}^{ - 1} } \right)\)

\(\alpha_{0}\) :

Thermal diffusivity of nanofluid \(\left( {{\text{m}}^{2}\, {\text{s}}^{ - 1} } \right)\)

\(\varGamma_{ * }\) :

Ratio among heat capacities \(( - )\)

\(K_{\text{r}}\) :

Chemical reaction rate \(\left( {{\text{s}}^{ - 1} } \right)\)

\(\sigma^{ * }\) :

Stefan–Boltzmann constant \(\left( {{\text{Wm}}^{ - 2}\, {\text{K}}^{ - 4} } \right)\)

\(D_{\text{B}}\) :

Brownian diffusion coefficient \(\left( {\text{m}^{2} \,{\text{s}}^{ - 1} } \right)\)

\(D_{{{\bar{\text{T}}}}}\) :

Thermophoresis diffusion coefficient \(\left( {\text{m}^{2} {\text{s}}^{ - 1} } \right)\)

\(\mu\) :

Dynamic viscosity \(\left( {{\text{kg}}\,{\text{m}}^{ - 1} \,{\text{s}}^{ - 1} } \right)\)

\(\nu\) :

Kinematic viscosity \(\left( {{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right)\)

\(c_{\text{p}}\) :

Heat capacity \(\left( {{\text{m}}^{2} \,{\text{s}}^{ - 2} \,{\text{K}}^{ - 1} } \right)\)

\(f_{\upxi} ,g_{\upxi}\) :

Dimensionless velocities \(( - )\)

\(\theta\) :

Dimensionless temperature \(( - )\)

\(\phi\) :

Dimensionless concentration \(( - )\)

\(\xi ,\tau\) :

Dimensionless parameters \(( - )\)

\(S\) :

Oscillating frequency to stretching rate ratio \(( - )\)

\({\rm K}_{\text{cs}}\) :

Couple stress parameter \(( - )\)

M :

Hartman number \(( - )\)

\(N_{\text{b}}\) :

Brownian motion parameter \(( - )\)

\(\delta\) :

Heat generation/absorption constant \(( - )\)

\(\Pr\) :

Prandtl number \(( - )\)

N :

Buoyancy ratio \(( - )\)

\(N_{\text{t}}\) :

Thermophoresis parameter \(( - )\)

\(\lambda\) :

Mixed convection parameter \(( - )\)

\(R_{ \oplus }\) :

Radiation parameter \(( - )\)

\({\text{Sc}}\) :

Schmidt number \(( - )\)

\(\kappa\) :

Chemical reaction parameter \(( - )\)

\(\text{Re}_{{{\tilde{\text{x}}}}}\) :

Renolds number \(( - )\)

\(G_{\text{r}}\) :

Grashof number \(( - )\)

\({\text{Nu}}_{{{\tilde{\text{x}}}}}\) :

Local Nusselt number \(( - )\)

\({\text{Sh}}_{{{\tilde{\text{x}}}}}\) :

Local Sherwood number \(( - )\)

\(q_{ * }\) :

Heat flux \(\left( {{\text{W}}\,{\text{m}}^{ - 2} } \right)\)

\(J_{ * }\) :

Mass flux \(\left( {{\text{kg}}\,{\text{s}}^{ - 1} \,{\text{m}}^{ - 2} } \right)\)

\(k\) :

Thermal conductivity \(\left( {{\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} } \right)\)

\(Cf_{{{\tilde{\text{x}}}}} ,Cf_{{{\tilde{\text{y}}}}}\) :

Skin friction coefficients \(( - )\)

\({\mathbb{B}}_{j} \left( {j = 1 - 10} \right)\) :

Arbitrary constants

\(\hbar_{\text{f}} ,\hbar_{\text{g}} ,\hbar_{\uptheta} ,\hbar_{\upphi}\) :

Auxiliary parameters

References

  1. Mebarek-Oudina F. Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Eng Sci Technol Int J. 2017;20(4):1324–33.

    Google Scholar 

  2. Alkasassbeh M, Omar Z, Mebarek-Oudina F, Raza J, Chamkha A. Heat transfer study of convective fin with temperature-dependent internal heat generation by hybrid block method. Heat Transf-Asian Res. 2019;48(4):1224–44.

    Article  Google Scholar 

  3. Laouira H, Mebarek-Oudina F, Hussein AK, Kolsi L, Merah A, Younis O. Heat transfer inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths. Heat Transf-Asian Res. 2020;49(1):406–23.

    Article  Google Scholar 

  4. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publ-Fed. 1995;231:99–106.

    CAS  Google Scholar 

  5. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128(3):240–50.

    Article  Google Scholar 

  6. Khan H. A revised model to analyze the heat and mass transfer mechanisms in the flow of Carreau nanofluids. Int J Heat Mass Transf. 2016;103:291–7.

    Article  Google Scholar 

  7. Sheikholeslami M, Vajravelu K, Rashidi MM. Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int J Heat Mass Transf. 2016;92:339–48.

    Article  CAS  Google Scholar 

  8. Rashid I, Haq RU, Khan ZH, Al-Mdallal QM. Flow of water-based alumina and copper nanoparticles along a moving surface with variable temperature. J Mol Liq. 2017;246:354–62.

    Article  CAS  Google Scholar 

  9. Hayat T, Muhammad K, Farooq M, Alsaedi A. Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface. AIP Adv. 2016;6(1):015214.

    Article  CAS  Google Scholar 

  10. Turkyilmazoglu M. Flow of nanofluid plane wall jet and heat transfer. Eur J Mech B Fluids. 2016;59:18–24.

    Article  Google Scholar 

  11. Turkyilmazoglu M. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Comput Meth Prog Biol. 2019;179:104997.

    Article  Google Scholar 

  12. Mahanthesh B, Amala S, Gireesha BJ, Animasaun IL. Effectiveness of exponential heat source, nanoparticle shape factor and Hall current on mixed convective flow of nanoliquids subject to rotating frame. Multidiscip Model Mater Struct. 2019;15(4):758–78.

    Article  CAS  Google Scholar 

  13. Khan SU, Waqas H, Bhatti MM, Imran M. Bioconvection in the rheology of magnetized Couple stress nanofluid featuring activation energy and Wu’s slip. J Non-Equil Thermody. 2020;5(1):81–95.

    Article  CAS  Google Scholar 

  14. Siddiqui AA, Turkyilmazoglu M. A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids. Micromachines. 2019;10(6):373.

    Article  PubMed Central  Google Scholar 

  15. Ahmad L, Khan M. Importance of activation energy in development of chemical covalent bonding in flow of Sisko magneto-nanofluids over a porous moving curved surface. Int J Hydrog Energy. 2019;44(21):10197–206.

    Article  CAS  Google Scholar 

  16. Siavashi M, Karimi K, Xiong Q, Doranehgard MH. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019;137:267–87.

    Article  CAS  Google Scholar 

  17. Manh TD, Bahramkhoo M, Gerdroodbary MB, Nam ND, Tlili I. Investigation of nanomaterial flow through non-parallel plates. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09352-0.

    Article  Google Scholar 

  18. Bhatti MM, Khalique CM, Bég TA, Bég OA, Kadir A. Numerical study of slip and radiative effects on magnetic Fe 3 O 4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion. Mod Phys Lett B. 2020;34(02):2050026.

    Article  CAS  Google Scholar 

  19. Zhang L, Arain MB, Bhatti MM, Zeeshan A, Hal-Sulami H. Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl Math Mech-ENGL. 2020;41(4):637–54.

    Article  CAS  Google Scholar 

  20. Bhatti MM, Shahid A, Abbas T, Alamri SZ, Ellahi R. Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate. Processes. 2020;8(3):328.

    Article  Google Scholar 

  21. Raza J, Mebarek-Oudina F, Mahanthesh B. Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips. Multidiscip Model Materials Struct. 2019;15(5):871–94.

    Article  CAS  Google Scholar 

  22. Raza J, Farooq M, Mebarek-Oudina F, Mahanthesh B. Multiple slip effects on MHD non-Newtonian nanofluid flow over a nonlinear permeable elongated sheet: numerical and statistical analysis. Multidiscip Model Mater Struct. 2019;15(5):913–31.

    Article  CAS  Google Scholar 

  23. Mebarek-Oudina F. Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transfer-Asian Research. 2019;48(1):135–47.

    Article  Google Scholar 

  24. Stokes VK. Couple stesses in fluids. Phys Fluids. 1966;9:1709–15.

    Article  CAS  Google Scholar 

  25. Srinivasacharya D, Kaladhar K. Soret and Dufour effects in a mixed convection couple stress fluid with heat and mass fluxes. Lat Am Appl Res. 2011;41:353–8.

    Google Scholar 

  26. Hayat T, Muhammad T, Alsaedi A. On three-dimensional flow of couple stress fluid with Cattaneo-Christov heat flux. Chin J Phys. 2017;55(3):930–8.

    Article  CAS  Google Scholar 

  27. Reddy GJ, Kumar M, Kethireddy B, Chamkha AJ. Colloidal study of unsteady magnetohydrodynamic couple stress fluid flow over an isothermal vertical flat plate with entropy heat generation. J Mol Liq. 2018;252:169–79.

    Article  CAS  Google Scholar 

  28. Hayat T, Asghar S, Tanveer A, Alsaedi A. Chemical reaction in peristaltic motion of MHD couple stress fluid in channel with Soret and Dufour effects. Results Phys. 2018;10:69–80.

    Article  Google Scholar 

  29. Khalid A, Khan I, Khan A, Shafied S. Influence of wall couple stress in MHD flow of a micropolar fluid in a porous medium with energy and concentration transfer. Results Phys. 2018;9:1172–84.

    Article  Google Scholar 

  30. Thammannaa GT, Kumara KG, Gireesha BJ, Ramesh GK, Prasannakumara BC. Three dimensional MHD flow of couple stress Casson fluid past an unsteady stretching surface with chemical reaction. Results Phys. 2017;7:4104–10.

    Article  Google Scholar 

  31. Sakiadis BC. Boundary layer behaviour on continuous solid surfaces: I boundary layer on a continuous flat surface. AICHE J. 1961;7:221–5.

    Article  CAS  Google Scholar 

  32. Crane L. Flow past a stretching plate. Z Angew Math Phys. 1970;21:645–7.

    Article  Google Scholar 

  33. Wang CY. Nonlinear streaming due to the oscillatory stretching of a sheet in a viscous fluid. Act. Mech. 1988;72:261–8.

    Article  Google Scholar 

  34. Abbas Z, Wang Y, Hayat T, Oberlack M. Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface. Int J Nonlinear Mech. 2008;43:783–97.

    Article  Google Scholar 

  35. Zheng LC, Jin X, Zhang XX, Zhang JH. Unsteady heat and mass transfer in MHD flow over an oscillatory stretching surface with Soret and Dufour effects. Acta Mech Sinica-PRC. 2013;29:667–75.

    Article  CAS  Google Scholar 

  36. Ali N, Khan SU, Abbas Z. Hydromagnetic flow and heat transfer of a Jeffrey fluid over an oscillatory stretching surface. Z Naturforsch. 2015;70:567–76.

    Article  CAS  Google Scholar 

  37. Khan SU, Shehzad SA, Rauf A, Ali N. Mixed convection flow of couple stress nanofluid over oscillatory stretching Sheet with heat absorption/generation effects. Results Phys. 2018;8:1223–31.

    Article  Google Scholar 

  38. Khan SU, Shehzad SA. Brownian movement and thermophoretic aspects in third grade nanofluid over oscillatory moving sheet. Phys Scripta. 2019;94(9):095202.

    Article  CAS  Google Scholar 

  39. Liao SJ. Homotopy analysis method in nonlinear differential equations. Heidelberg: Springer; 2012.

    Book  Google Scholar 

  40. Ahmad J, Khan M, Ahmad L. Effectiveness of homogeneous-heterogeneous reactions in Maxwell fluid flow between two spiraling disks with improved heat conduction features. J Therm Anal Calorim. 2019;139:3185–95.

    Article  CAS  Google Scholar 

  41. Hayat T, Aziz A, Muhammad T, Alsaedi A. Effects of binary chemical reaction and Arrhenius activation energy in Darcy-Forchheimer three-dimensional flow of nanofluid subject to rotating frame. J Therm Anal Calorim. 2019;136:1769–79.

    Article  CAS  Google Scholar 

  42. Farooq A, Ali R, Benim AC. Soret and Defour effects on three dimensional Oldroyd-B fluid. Phys A. 2018;503:345–54.

    Article  Google Scholar 

  43. Khan SU, Rauf A, Shehzad SA, Abbas Z, Javed T. Study of bioconvection flow in Oldroyd-B nanofluid with motile organisms and effective Prandtl approach. Phys A. 2019;527:121179.

    Article  CAS  Google Scholar 

  44. Ullah I, Waqas M, Hayat T, Alsaedi A, Khan MI. Thermally radiated squeezed flow of magneto-nanofluid between two parallel disks with chemical reaction. J Therm Anal Calorim. 2019;135:1021–30.

    Article  CAS  Google Scholar 

  45. Hayat T, Haider F, Muhammad T, Alsaedi A. Darcy-Forchheimer three-dimensional flow of carbon nanotubes with nonlinear thermal radiation. J Therm Anal Calorim. 2020;140:2711–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Samaira Aziz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, S., Ahmad, I., Ali, N. et al. Magnetohydrodynamic mixed convection 3-D simulations for chemically reactive couple stress nanofluid over periodically moving surface with thermal radiation. J Therm Anal Calorim 146, 435–448 (2021). https://doi.org/10.1007/s10973-020-09962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09962-8

Keywords

Navigation