Skip to main content
Log in

Influence of hydrothermal treatment parameters on the phase composition of zeolites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Analcime was prepared by hydrothermal transformation of metakaolin-based geopolymer activated by means of sodium water glass. Gradual transformation of geopolymer through primary and unstable zeolitic phases up to final analcime was studied as a function of hydrothermal treatment duration (6–48 h) and access of water vapour under the selected conditions (165 °C, 0.5 MPa). Composition, microstructure, and thermal stability of the prepared samples were assessed using simultaneous thermogravimetry and differential scanning calorimetry, X-ray diffraction and high-temperature XRD analyses, and scanning electron microscopy. In the case of shorter autoclaving and access of water vapour, the mix of different zeolitic phases was formed: analcime, zeolite P2 gmelinite-Na, and chabazite-Na. From the time of 24 h and autoclaving in the closed moulds, pure cubic analcime was detected. Uniform microstructure of these samples comprised of trapezoid particles with the diameter between 50 and 60 µm. Prolongation of autoclaving time did not lead to the significant change of particle size and their composition. Dehydration of detected zeolites took place through the formation of defect or unknown zeolitic structures before the structural collapse happened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Azizi SN, Yousefpour M. Synthesis of zeolites NaA and analcime using rice husk ash as silica source without using organic template. J Mater Sci. 2010;45:5692–7. https://doi.org/10.1007/s10853-010-4637-7.

    Article  CAS  Google Scholar 

  2. Sandoval MV, Henao JA, Rios CS, Williams CD, Apperley DC. Synthesis and characterization of zeotype ANA framework by hydrothermal reaction of natural clinker. Fuel. 2009;88:272–81. https://doi.org/10.1016/j.fuel.2008.08.017.

    Article  CAS  Google Scholar 

  3. Querol X, Moreno N, Urnana JC, Alastuey A, Hernandez E, Lopez-Soler A, Plana F. Synthesis of zeolites from coal fly ash: an overview. Int J Coal Geol. 2002;50:413–23. https://doi.org/10.1016/S0166-5162(02)00124-6.

    Article  CAS  Google Scholar 

  4. Zhang PP, Chen XG, Cheng JP, Ye Y. Preparation of analcime from palygorskite. J. Mater. Sci. Eng. 2010;126:501–4.

    Google Scholar 

  5. Dyer A, Tangkawanit S, Rangsriwatananon K. Exchange diffusion of Cu2+, Ni2+, Pb2+ and Zn2+ into analcime synthesized from perlite. Microporous Mesoporous Mater. 2004;75:273–9. https://doi.org/10.1016/j.micromeso.2004.07.007.

    Article  CAS  Google Scholar 

  6. Ma X, Yang J, Ma H, Liu Ch, Zhang P. Synthesis and characterization of analcime using quartz syenite powder by alkali-hydrothermal treatment. Microporous Mesoporous Mater. 2015;201:134–40. https://doi.org/10.1016/j.micromeso.2014.09.019.

    Article  CAS  Google Scholar 

  7. Johnson EBG, Arshad SE. Hydrothermally synthesized zeolites based on kaolinite: a review. Appl Clay Sci. 2014;97–98:215–21. https://doi.org/10.1016/j.clay.2014.06.005.

    Article  CAS  Google Scholar 

  8. Brough A, Katz A, Bakharev T, Sun G, Kirkpatrick R, Struble L, Young J. Microstructural aspects of zeolite formation in alkali activated cements containing high levels of fly ash. MRS Proc. 1994;370:199–208. https://doi.org/10.1557/PROC-370-197.

    Article  Google Scholar 

  9. Rodríguez ED, Bernal SA, Provis JL, Paya J, Monzo JM, Borrachero MV. Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cem Concr Compos. 2013;35:1–11. https://doi.org/10.1016/j.cemconcomp.2012.08.025.

    Article  CAS  Google Scholar 

  10. Palomo A, Alonso S, Fernandez-Jimenez A. Alkaline activation of fly ashes: NMR study of the reaction products. J Am Ceram Soc. 2004;87:1141–5. https://doi.org/10.1111/j.1551-2916.2004.01141.x.

    Article  CAS  Google Scholar 

  11. Yan H, Xue-Min C, Jin M, Liu LP, Liu XD, Chen JY. The hydrothermal transformation of solid geopolymers into zeolites. Microporous Mesoporous Mater. 2012;161:187–92. https://doi.org/10.1016/j.micromeso.2012.05.039.

    Article  CAS  Google Scholar 

  12. Jihong Y. Synthesis of zeolites. In: Čejka J, van Bekkum H, Corma A, Schüth F, editors. Introduction to zeolite science and practice; studies in surface science and catalysis. Amsterdam: Elsevier; 2007. p. 39–103. https://doi.org/10.1016/s0167-2991(07)80791-9.

    Chapter  Google Scholar 

  13. Alkan M, Hopa C, Yilmaz Z, Güler H. The effect of alkali concentration and solid/liquid ratio on the hydrothermal synthesis of zeolite NaA from natural kaolinite. Microporous Mesoporous Mater. 2005;86:176–84. https://doi.org/10.1016/j.micromeso.2005.07.008.

    Article  CAS  Google Scholar 

  14. Reyes CAR, Williams CD, Alarcón OMC. Synthesis of zeolite LTA from thermally treated kaolinite. Rev Fac Ing Univ Antioq. 2010;53:30–41.

    CAS  Google Scholar 

  15. Panagiotopoulou C, Tsivilis S, Kakali G. Application of the Taguchi approach for the composition optimization of alkali activated fly ash binders. Constr Build Mater. 2015;91:17–22. https://doi.org/10.1016/j.conbuildmat.2015.05.005.

    Article  Google Scholar 

  16. Khalid HR, Lee NK, Park SM, Abbas N, Lee HK. Synthesis of geopolymer supported zeolites via robust one-step method and their adsorption potential. J Hazard Mater. 2018;353:522–33. https://doi.org/10.1016/j.jhazmat.2018.04.049.

    Article  CAS  PubMed  Google Scholar 

  17. Provis JL, Lukey GC, van Deventer JSJ. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem Mater. 2005;17:3075–85. https://doi.org/10.1021/cm050230i.

    Article  CAS  Google Scholar 

  18. Oh JE, Monteiro PJM, Jun SS, Choi S, Clark SM. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem Concr Res. 2010;40:189–96. https://doi.org/10.1016/j.cemconres.2009.10.010.

    Article  CAS  Google Scholar 

  19. Liu ZH, Tang Q, Li CM, He Y, Cui XM. Preparation of NaA zeolite spheres from geopolymer gels using a one-step method in silicone oil. Int J Appl Ceram Technol. 2017;14:982–6. https://doi.org/10.1111/ijac.12708.

    Article  CAS  Google Scholar 

  20. Rożek P, Król M, Mozgawa W. Geopolymer–zeolite composites: a review. J Clean Prod. 2019;230:557–79. https://doi.org/10.1016/j.jclepro.2019.05.152.

    Article  CAS  Google Scholar 

  21. Lahoti M, Narang P, Tan KH, Yang E-H. Mix design factors and strength prediction of metakaolin-based geopolymer. Ceram Int. 2017;2017:11433–41. https://doi.org/10.1016/j.ceramint.2017.06.006.

    Article  CAS  Google Scholar 

  22. Arbel Haddad MA, Ofer-Rozovsky E, Bar-Nes G, Borojovich EJC, Nikolski A, Mogiliansky D, Katz A. Formation of zeolites in metakaolin-based geopolymers and their potential application for Cs immobilization. J Nucl Mater. 2017;493:168–79. https://doi.org/10.1016/j.jnucmat.2017.05.046.

    Article  CAS  Google Scholar 

  23. Mazzi F, Galli E. Is each analcime different? Am Mineral. 1978;63:448–60.

    Google Scholar 

  24. Sakizci M. Investigation of thermal and structural properties of natural and ion-exchanged analcime. Anadolu Univ J Sci Technol A Appl Sci Eng. 2016;17:724–34. https://doi.org/10.18038/aubtda.266863.

    Article  Google Scholar 

  25. Todorović M, Radak-Jovanović Z, Gal IJ, Dyer A. The release of tritiated water from synthetic analcime into surrounding water colloids. Surf Sci. 1987;23:345–51. https://doi.org/10.1016/0166-6622(87)80275-5.

    Article  Google Scholar 

  26. Liu J, Fang Y. Study on the disposition of water in fly ash-based geopolymers using ATR-IR. In: 5th international conference on durability of concrete structures, Jun 30–Jul 1, 2016, Shenzhen University, Shenzhen, Guangdong Province, P. R. China. 2016, pp. 163–70. https://doi.org/10.5703/1288284316126.

  27. White CE, Provis JL, Proffen T, van Deventer JSJ. The effects of temperature on the local structure of metakaolin-based geopolymer binder: a neutron pair distribution function investigation. J Am Ceram Soc. 2010;93:3486–92. https://doi.org/10.1111/j.1551-2916.2010.03906.x.

    Article  CAS  Google Scholar 

  28. Duxson P, Lukey GC, van Deventer JSJ. Physical evolution of Na-Geopolymer derived from metakaolin up to 1000 °C. J Mater Sci. 2007;42:3044–54. https://doi.org/10.1007/s10853-006-0535-4.

    Article  CAS  Google Scholar 

  29. Vereshchagina TA, Kutikhina EA, Solovyov LA, Vereshchagin SN, Mazurova EV, Chernykh YY, Anshits AG. Synthesis and structure of analcime and analcime–zirconia composite derived from coal fly ash cenospheres. Microporous Mesoporous Mater. 2018;258:228–35. https://doi.org/10.1016/j.micromeso.2017.09.011.

    Article  CAS  Google Scholar 

  30. Kohoutková M, Kloužková A, Maixner J, Mrázová M. Preparation and characterization of analcime by X-ray and SEM analyses. Ceram Silik. 2007;51:9–14.

    Google Scholar 

  31. Azizi SN, Daghigh AA, Abrishamkar M. Phase transformation of zeolite P to Y and analcime zeolites due to changing the time and temperature. J Spectrosc. 2013. https://doi.org/10.1155/2013/428216.

    Article  Google Scholar 

  32. Tucker MG, Keen DA, Dove MT. A detailed structural characterization of quartz on heating through the α–β phase transition. Mineral Mag. 2001;65:489–507.

    Article  CAS  Google Scholar 

  33. Cruciani G. Zeolites upon heating: factors governing their thermal stability and structural changes. J Phys Chem Solids. 2006;67:1973–94. https://doi.org/10.1016/j.jpcs.2006.05.057.

    Article  CAS  Google Scholar 

  34. van Reeuwijk LP. The thermal dehydration of natural zeolites. PhD Thesis, Wageningen University, Wageningen; 1974.

  35. Cruciani G, Gualtieri A. Dehydration dynamics of analcime by in situ synchrotron powder diffraction. Am Mineral. 1999;84:112–9. https://doi.org/10.2138/am-1999-1-212.

    Article  CAS  Google Scholar 

  36. Baur WH. Self-limiting distorsion by antirotating hinges of flexible but noncollapsible frameworks. J Solid State Chem. 1992;97:243–7. https://doi.org/10.1016/0022-4596(92)90031-P.

    Article  CAS  Google Scholar 

  37. Bish DL, Carey JW. Thermal behavior of natural zeolites. Rev Mineral Geochem. 2001;45:403–52. https://doi.org/10.2138/rmg.2001.45.13.

    Article  CAS  Google Scholar 

  38. Puntis A, Giampaolo G, Graeme-Barber A. High temperature X-ray diffraction and thermogravimetric analysis of the dehydration of analcime, NaAlSi2O6·H2O. EUG VII Strasb Terra Abstr. 1993;5:497.

    Google Scholar 

  39. Line CMB. The behaviour of water in analcime. PhD Thesis, University of Cambridge, Cambridge UK; 1995.

  40. Line CMB, Putnis A, Putnis C, Giampaolo C. The dehydration kinetics and microtexture of analcime from two parageneses. Am Mineral. 1995;80:268–79. https://doi.org/10.2138/am-1995-3-408.

    Article  CAS  Google Scholar 

  41. Line CMB, Dove MT, Knight KS, Winkler B. The low temperature behaviour of analcime. 1: high-resolution neutron powder diffraction. Mineral Mag. 1996;60:499–507. https://doi.org/10.1180/minmag.1996.060.400.11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by courtesy of the Slovak Research and Development Agency APVV-15-0631, Slovak Grant Agency VEGA No. 2/0097/17 and by the project: Materials Research Centre at FCH BUT—Sustainability and Development, REG LO1211, with financial support from the National Programme for Sustainability I (Ministry of Education, Youth and Sports).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kuzielová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzielová, E., Žemlička, M., Másilko, J. et al. Influence of hydrothermal treatment parameters on the phase composition of zeolites. J Therm Anal Calorim 142, 37–50 (2020). https://doi.org/10.1007/s10973-020-09784-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09784-8

Keywords

Navigation