Skip to main content
Log in

Experimental study on melting performance of phase change material-based finned heat sinks by a comprehensive evaluation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Efficient thermal management has become an important challenge for the integration and miniaturization of electronic devices with high power density. Phase change material (PCM)-based finned heat sink is an efficient passive cooling technology for an intermittent-use electronic device with high power density. The present work reports an experimental study on the transient thermal performance of PCM-based finned heat sinks for thermal management of electronic devices, with particular emphasis on the roles of heat load and PCM volumetric fraction. The temperature response and melting front evolution in heat sinks are analyzed and compared with the corresponding cavity. Moreover, the effects of heat load, fin geometry and PCM volumetric fraction on the melting performance of heat sinks are discussed. The results indicate the presence of fins effectively improves the thermal performance of PCM-based heat sinks, and a more fin number leads to a lower operating temperature and hence the duration of electronic devices is longer in an accepted temperature. Moreover, a higher input heat flux results in a higher operating temperature and a shorter duration of low operating temperature. The increase in PCM volumetric fraction enhances the thermal storage capacity of finned heat sinks and reduces the operating temperature. Therefore, the finned heat sinks filled with PCM ensure sufficiently low operating temperature for perfect reliability and duration of high-power-density electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lan K, Liu J, Li Z, Xie X, Huo W, Chen Y, et al. Progress in octahedral spherical hohlraum study. Matter Radiat Extremes. 2016;1(1):8–27. https://doi.org/10.1016/j.mre.2016.01.003.

    Article  Google Scholar 

  2. Yu W, Liu XD, Zhao YJ, Chen YP. Droplet generation hydrodynamics in the microfluidic cross-junction with different junction angles. Chem Eng Sci. 2019;203:259–84. https://doi.org/10.1016/j.ces.2019.03.082.

    Article  CAS  Google Scholar 

  3. Chen Q, Pan N, Guo Z-Y. A new approach to analysis and optimization of evaporative cooling system II: applications. Energy. 2011;36(5):2890–8. https://doi.org/10.1016/j.energy.2011.02.031.

    Article  Google Scholar 

  4. Neyestani M, Nazari M, Shahmardan MM, Sharifpur M, Ashouri M, Meyer JP. Thermal characteristics of CPU cooling by using a novel porous heat sink and nanofluids. J Therm Anal Calorim. 2019;138(1):805–17. https://doi.org/10.1007/s10973-019-08256-y.

    Article  CAS  Google Scholar 

  5. Sun L, Jin Y, You F. Active disturbance rejection temperature control of open-cathode proton exchange membrane fuel cell. Appl Energy. 2020;261:114381. https://doi.org/10.1016/j.apenergy.2019.114381.

    Article  CAS  Google Scholar 

  6. Liu X, Chen Y, Shi M. Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs). Int J Therm Sci. 2013;65:224–33. https://doi.org/10.1016/j.ijthermalsci.2012.10.012.

    Article  Google Scholar 

  7. Qu J, Wu HY, Cheng P, Wang Q, Sun Q. Recent advances in MEMS-based micro heat pipes. Int J Heat Mass Transf. 2017;110:294–313. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.034.

    Article  Google Scholar 

  8. Li WQ, Qu ZG, He YL, Tao YB. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials. J Power Sources. 2014;255:9–15. https://doi.org/10.1016/j.jpowsour.2014.01.006.

    Article  CAS  Google Scholar 

  9. Ashraf MJ, Ali HM, Usman H, Arshad A. Experimental passive electronics cooling: parametric investigation of pin-fin geometries and efficient phase change materials. Int J Heat Mass Transf. 2017;115:251–63. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.114.

    Article  CAS  Google Scholar 

  10. Arshad A, Ali HM, Khushnood S, Jabbal M. Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter. Int J Heat Mass Transf. 2018;117:861–72. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.008.

    Article  CAS  Google Scholar 

  11. Chen R-H, Chow LC, Navedo JE. Effects of spray characteristics on critical heat flux in subcooled water spray cooling. Int J Heat Mass Transf. 2002;45(19):4033–43. https://doi.org/10.1016/S0017-9310(02)00113-8.

    Article  CAS  Google Scholar 

  12. Lin L, Ponnappan R. Heat transfer characteristics of spray cooling in a closed loop. Int J Heat Mass Transf. 2003;46(20):3737–46. https://doi.org/10.1016/S0017-9310(03)00217-5.

    Article  CAS  Google Scholar 

  13. Wang J, Gao W, Zhang H, Zou MH, Chen YP, Zhao YJ. Programmable wettability on photocontrolled graphene film. Sci Adv. 2018;4(9):eaat7392. https://doi.org/10.1126/sciadv.aat7392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hao M, Li J, Park S, Moura S, Dames C. Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy. Nat Energy. 2018;3(10):899–906. https://doi.org/10.1038/s41560-018-0243-8.

    Article  CAS  Google Scholar 

  15. Sun L, Shen J, Hua QS, Lee KY. Data-driven oxygen excess ratio control for proton exchange membrane fuel cell. Appl Energy. 2018;231:866–75. https://doi.org/10.1016/j.apenergy.2018.09.036.

    Article  CAS  Google Scholar 

  16. Sun L, Li G, Hua QS, Jin Y. A hybrid paradigm combining model-based and data-driven methods for fuel cell stack cooling control. Renew Energy. 2020;147:1642–52. https://doi.org/10.1016/j.renene.2019.09.048.

    Article  Google Scholar 

  17. Chen Y, Liu X, Shi M. Hydrodynamics of double emulsion droplet in shear flow. Appl Phys Lett. 2013;102(5):051609. https://doi.org/10.1063/1.4789865.

    Article  CAS  Google Scholar 

  18. Wang J, Sun L, Zou M, Gao W, Liu C, Shang L, et al. Bioinspired shape-memory graphene film with tunable wettability. Sci Adv. 2017;3(6):e1700004. https://doi.org/10.1126/sciadv.1700004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Swanson TD, Birur GC. NASA thermal control technologies for robotic spacecraft. Appl Therm Eng. 2003;23(9):1055–65. https://doi.org/10.1016/S1359-4311(03)00036-X.

    Article  Google Scholar 

  20. Ali HM, Arshad A. Experimental investigation of n-eicosane based circular pin-fin heat sinks for passive cooling of electronic devices. Int J Heat Mass Transf. 2017;112:649–61. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.004.

    Article  CAS  Google Scholar 

  21. Kandasamy R, Wang X-Q, Mujumdar AS. Transient cooling of electronics using phase change material (PCM)-based heat sinks. Appl Therm Eng. 2008;28(8):1047–57. https://doi.org/10.1016/j.applthermaleng.2007.06.010.

    Article  CAS  Google Scholar 

  22. Hosseinizadeh SF, Tan FL, Moosania SM. Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins. Appl Therm Eng. 2011;31(17):3827–38. https://doi.org/10.1016/j.applthermaleng.2011.07.031.

    Article  CAS  Google Scholar 

  23. Mahmoud S, Tang A, Toh C, Al-Dadah R, Soo SL. Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks. Appl Energy. 2013;112:1349–56. https://doi.org/10.1016/j.apenergy.2013.04.059.

    Article  CAS  Google Scholar 

  24. Levin PP, Shitzer A, Hetsroni G. Numerical optimization of a PCM-based heat sink with internal fins. Int J Heat Mass Transf. 2013;61:638–45. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.056.

    Article  Google Scholar 

  25. Gao D, Chen Z. Lattice Boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media. Int J Therm Sci. 2011;50(4):493–501. https://doi.org/10.1016/j.ijthermalsci.2010.11.010.

    Article  Google Scholar 

  26. Fan L-W, Wu Y-Y, Xiao Y-Q, Zeng Y, Zhang Y-L, Yu Z-T. Transient performance of a thermal energy storage-based heat sink using a liquid metal as the phase change material. Appl Therm Eng. 2016;109:746–50. https://doi.org/10.1016/j.applthermaleng.2016.08.137.

    Article  CAS  Google Scholar 

  27. Yang X-H, Tan S-C, He Z-Z, Zhou Y-X, Liu J. Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock. Appl Therm Eng. 2017;119:34–41. https://doi.org/10.1016/j.applthermaleng.2017.03.050.

    Article  CAS  Google Scholar 

  28. Qu ZG, Li WQ, Wang JL, Tao WQ. Passive thermal management using metal foam saturated with phase change material in a heat sink. Int Commun Heat Mass Transf. 2012;39(10):1546–9. https://doi.org/10.1016/j.icheatmasstransfer.2012.09.001.

    Article  CAS  Google Scholar 

  29. Wang H, Wang F, Li Z, Tang Y, Yu B, Yuan W. Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material. Appl Energy. 2016;176:221–32. https://doi.org/10.1016/j.apenergy.2016.05.050.

    Article  CAS  Google Scholar 

  30. Fan L-W, Zhu Z-Q, Zeng Y, Xiao Y-Q, Liu X-L, Wu Y-Y, et al. Transient performance of a PCM-based heat sink with high aspect-ratio carbon nanofillers. Appl Therm Eng. 2015;75:532–40. https://doi.org/10.1016/j.applthermaleng.2014.10.050.

    Article  CAS  Google Scholar 

  31. Fan L-W, Xiao Y-Q, Zeng Y, Fang X, Wang X, Xu X, et al. Effects of melting temperature and the presence of internal fins on the performance of a phase change material (PCM)-based heat sink. Int J Therm Sci. 2013;70:114–26. https://doi.org/10.1016/j.ijthermalsci.2013.03.015.

    Article  Google Scholar 

  32. Wang X-Q, Mujumdar AS, Yap C. Effect of orientation for phase change material (PCM)-based heat sinks for transient thermal management of electric components. Int Commun Heat Mass Transf. 2007;34(7):801–8. https://doi.org/10.1016/j.icheatmasstransfer.2007.03.008.

    Article  Google Scholar 

  33. Tan FL, Tso CP. Cooling of mobile electronic devices using phase change materials. Appl Therm Eng. 2004;24(2):159–69. https://doi.org/10.1016/j.applthermaleng.2003.09.005.

    Article  CAS  Google Scholar 

  34. Arshad A, Ali HM, Ali M, Manzoor S. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: effect of pin thickness and PCM volume fraction. Appl Therm Eng. 2017;112:143–55. https://doi.org/10.1016/j.applthermaleng.2016.10.090.

    Article  CAS  Google Scholar 

  35. Venkateshan S. Mechanical measurements. New York: Wiley; 2015.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the supports of the National Natural Science Foundation of China (Grant Nos. 51906039, 51725602, and 51776037), Natural Science Foundation of Jiangsu Province (Grant Nos. BK20170082 and BK20180404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengbin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Zhang, C., Sun, Q. et al. Experimental study on melting performance of phase change material-based finned heat sinks by a comprehensive evaluation. J Therm Anal Calorim 144, 869–882 (2021). https://doi.org/10.1007/s10973-020-09508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09508-y

Keywords

Navigation