Skip to main content
Log in

Multi-component PZT ceramics obtained by mechanochemical activation and conventional ceramic technology

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the paper, the multi-component PZT-type ceramics doped with Mn4+, Sb3+, W6+ and Ni2+ were investigated. The following chemical composition was selected: Pb(Zr0.49Ti0.51)0.94Mn0.01Sb0.03W0.015Ni0.01O3. The ceramic powders were synthesized by two methods: (i) the classical technological method using powder calcination and (ii) mechanochemical synthesis at room temperature. Densification of the powders (sintering) was carried by free sintering method. In the case of the mechanochemical activation, the development of the synthesis has been monitored by XRD and SEM investigations after different milling periods (25 h, 50 h and 75 h). From the obtained powder, the bulk ceramic samples have been prepared by uniaxial pressing and subsequent sintering. The ceramic multi-component PZT-type samples were characterized in wide temperature range by DTA, TG, DC electrical conductivity, XRD, SEM and EDS (energy-dispersive spectrometry) methods, and their ferroelectric, dielectric and piezoelectric properties were studied. At the work, a comparison of test results for samples obtained by two methods was made. The X-ray investigations confirmed that the obtained material exhibits a perovskite-like structure with a tetragonal phase (close to the morphotropic area). The detailed results of the multi-component PZT-type ceramics predispose these materials in microelectronic applications, for example, as element of the actuators and piezoelectric transducers. The application of the mechanochemical synthesis to obtain the PZT-type materials allows to shorten the time of the technological process, and at the same time not to reduce the electrophysical properties of ceramic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tzou HS, Lee H-J, Arnolod SM. Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mech Adv Mater Struct. 2014;11:367–93.

    Article  Google Scholar 

  2. Tzou HS, Guran A, Gabbert U, Tani J, Breitbach A. Structronic system-smart structure, devices and system. Systems and control, vol. 2. Singapore: World Scientific; 1998.

    Google Scholar 

  3. Gabbert U, Tzou HS. Smart structures and structronic system. In: IUTAM symposium on smart structures and structronic systems. Dordrecht: Kluwer; 2001.

  4. Uchino K, Giniewicz JR. Micromechatronics. New York: Marcel Dekker; 2003.

    Google Scholar 

  5. Moulson AJ, Herbert JM. Electroceramics: materials, properties, applications. 2nd ed. Chichester: Wiley; 2003.

    Book  Google Scholar 

  6. Chu S-Y, Chen T-Y, Tsai I-T, Water W. Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device. Sens Actuator A Phys. 2004;113:198–203.

    Article  CAS  Google Scholar 

  7. Xu Y. Ferroelectric materials and their applications. Amsterdam: North-Holland; 1991.

    Google Scholar 

  8. Moulson AJ, Herbert JM. Electroceramics: materials, properties, application. Chichester: Wiley; 2003.

    Book  Google Scholar 

  9. Mason WP. Piezoelectricity, its history and applications. J Acoust Soc Am. 1981;70:1561–6.

    Article  CAS  Google Scholar 

  10. Tzou HS, Fukuda T. Precision sensors, actuators, and system. Dordrecht: Kluwer; 1992.

    Book  Google Scholar 

  11. Karapuzha AS, James NK, Khanbareh H, van der Zwaag S, Groen WA. Structure, dielectric and piezoelectric properties of donor doped PZT ceramics across the phase diagram. Ferroelectrics. 2016;504:160–71.

    Article  CAS  Google Scholar 

  12. Boucher E, Guiffard B, Lebrun L, Guyomar D. Effects of Zr/Ti ratio on structural, dielectric and piezoelectric properties of Mn-and (Mn, F)-doped lead zirconate titanate ceramics. Ceram Int. 2006;32:479–85.

    Article  CAS  Google Scholar 

  13. Zachariasz R, Bochenek D. Properties of the PZT type ceramics admixed with barium and niobium. Arch Metall Mater. 2009;54:895–902.

    CAS  Google Scholar 

  14. M’nassri R, Selmi A, Boudjada NC, Cheikhrouhou A. Field dependence of magnetocaloric properties of 20% Cr-doped Pr0.7Ca0.3MnO3 perovskite. J Therm Anal Calorim. 2017;129:53–64.

    Article  Google Scholar 

  15. Jankowska-Sumara I, Podgórna M, Majchrowski A, Zukrowski J. Thermal analysis of phase transitions in PbZr1−xSnxO3 antiferroelectric single crystals. J Therm Anal Calorim. 2017;128:713–9.

    Article  CAS  Google Scholar 

  16. Raevski IP, Kuprina YA, Zakharchenko IN, Gusev AA, Isupov VP, Bunina OA, Titov VV, Raevskaya SI, Malitskaya MA, Blazhevich AV, Orlov SV, Sitalo EI. Structural and dielectric studies of PbYb1/2Nb1/2O3 ceramics with the differing degree of the long-range compositional ordering fabricated by mechanoactivation. In: Parinov IA, et al., editors. Advanced materials, Springer proceedings in physics, vol. 207. Berlin: Springer; 2018. p. 209–24.

    Google Scholar 

  17. Xiang P-H, Dong X-L, Chen H, Zhang Z, Guo J-K. Mechanical and electrical properties of small amount of oxides reinforced PZT ceramics. Ceram Int. 2003;29:499–503.

    Article  CAS  Google Scholar 

  18. Li J, Sun Q. Effects of Cr2O3 doping on the electrical properties and the temperature stabilities of PZT binary piezoelectric ceramics. Rare Met. 2008;27:362–6.

    Article  Google Scholar 

  19. Bedoya C, Muller C, Baudour J-L, Madigou V, Anne M, Roubin M. Sr-doped PbZr1−xTixO3 ceramic: structural study and field-induced reorientation of ferroelectric domains. Mater Sci Eng B. 2000;75:43–52.

    Article  Google Scholar 

  20. Gao F, Cheng L-H, Hong R-Z, Liu J, Wang C-J, Tian C. Crystal structure and piezoelectric properties of xPb(Mn1/3Nb2/3)O3–(0.2-x)Pb(Zn1/3Nb2/3)O3–0.8Pb(Zr0.52Ti0.48)O3 ceramics. Ceram Int. 2009;35:1719–23.

    Article  CAS  Google Scholar 

  21. Yimnirun R, Ananta S, Laoratanakul P. Effects of Pb(Mg1/3Nb2/3)O3 mixed-oxide modification on dielectric properties of Pb(Zr0.52Ti0.48)O3 ceramics. Mater Sci Eng B. 2004;112:79–86.

    Article  Google Scholar 

  22. Prasatkhetragarn A, Yimnirun R. Phase formation, electrical properties and morphotropic phase boundary of 0.95Pb(ZrxTi1−x)O3–0.05Pb(Mn1/3Nb2/3)O3 ceramics. Ceram Int. 2013;39:S91–5.

    Article  CAS  Google Scholar 

  23. Wang G, Chen Y. Isothermal crystallization and spherulite morphology of poly(ethylene terephthalate)/Na+-MMT nanocomposites prepared through solid-state mechanochemical method. J Therm Anal Calorim. 2018;131:2611–24.

    Article  CAS  Google Scholar 

  24. Haertling GH. Ferroelectric ceramics: history and technology. J Am Ceram Soc. 1999;82:797–818.

    Article  CAS  Google Scholar 

  25. Kour P, Sinha SK. Dielectric, ferroelectric and piezoelectric properties of La3+ substituted PZT ceramics. Dig J Nanomater Biostruct. 2012;7:1327–32.

    Google Scholar 

  26. Guiffard B, Troccaz M. Low temperature synthesis of stoichiometric and homogeneous lead zirconate titanate powder by oxalate and hydroxide coprecipitation. Mater Res Bull. 1998;33:1759–68.

    Article  CAS  Google Scholar 

  27. Szafraniak I, Hilczer B, Pietraszko A, Talik E. Phase formations during mechanochemical synthesis of PbTiO3. J Electroceram. 2008;20:21–5.

    Article  Google Scholar 

  28. Szafraniak-Wiza I, Kozielski L, Sebastian T. Preparation and properties of Ba1−xCaxTiO3 nanopowders obtained by mechanochemical synthesis. Phase Transit. 2016;89:803–7.

    Article  CAS  Google Scholar 

  29. Bochenek D, Niemiec P, Adamczyk M, Szafraniak-Wiza I. Physical properties of lead-free BaFe1/2Nb1/2O3 ceramics obtained from mechanochemically synthesized powders. J Mater Sci. 2018;53:13501–12.

    Article  CAS  Google Scholar 

  30. Raymond O, Font R, Suárez-Almodovar N, Portelles J, Siqueiros JM. Frequency-temperature response of ferroelectromagnetic PbFe1/2Nb1/2O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J Appl Phys. 2005;97:084107.

    Article  Google Scholar 

  31. Bochenek D, Surowiak Z, Krok-Kowalski J, Poltierova-Vejpravova J. Influence of the sintering conditions on the physical proprieties of the ceramic PFN multiferroics. J Electroceram. 2010;25:122–9.

    Article  CAS  Google Scholar 

  32. Majumder SB, Bhattacharyya S, Katiyar RS, Manivannan A, Dutta P, Seehra MS. Dielectric and magnetic properties of sol-gel-derived lead iron niobate ceramics. J Appl Phys. 2006;99:024108.

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially financed by Polish Ministry of Science and Higher Education within statutory activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Bochenek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochenek, D., Niemiec, P., Szafraniak-Wiza, I. et al. Multi-component PZT ceramics obtained by mechanochemical activation and conventional ceramic technology. J Therm Anal Calorim 142, 5–17 (2020). https://doi.org/10.1007/s10973-019-09141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09141-4

Keywords

Navigation